首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  国内免费   2篇
化学工业   16篇
金属工艺   1篇
能源动力   1篇
一般工业技术   8篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2007年   1篇
排序方式: 共有26条查询结果,搜索用时 0 毫秒
1.
During the ethoxylation of fatty alcohol, 1,4-dioxane, a toxic by-product may be formed. A simple and rapid method using gas chromatography with a flame ionization detector was developed for detection of 1,4-dioxane in commercial palm-based fatty alcohol ethoxylate (FAEO). The method involved spiking the 1,4-dioxane into FAEO samples, and directly injecting the spiked samples into GC with no clean-up steps. The method was validated in terms of linearity, accuracy, intra-day precision and inter-day precision, selectivity, limit of detection and limit of quantification. In terms of linearity, a calibration curve with a correlation coefficient of 0.9999 was obtained. The accuracy of the method was indicated by recovery obtained for spiked 1,4-dioxane samples at 5 levels of spiking, i.e. at 30, 60, 100, 200 and 500 μg/g, where recoveries were within 99–105 % with relative standard deviation (RSD) of <4.0 %. The RSD values of the intra-day and inter-day precision were <1.0 %. The limit of detection and quantification was 10 and 30 μg/g, respectively. The selectivity of the method was indicated by its ability to analyze commercial FAEO samples with different average moles of ethylene oxide (EO). The GC profiles of these FAEO with varying numbers of moles of EO were similar, and there were no other peaks interfering with the 1,4-dioxane peak.  相似文献   
2.
Journal of Inorganic and Organometallic Polymers and Materials - Copper oxide doped TeO2–B2O3 glass system with empirical formula;...  相似文献   
3.
4.
An organic–inorganic nanohybrid nanocomposite was synthesized by co-precipitation method using beta-naphthoxyacetate (BNOA) as guest anion and zinc–aluminium layered double hydroxide (Zn–Al-LDH) as the inorganic host. A well-ordered nanohybrid nanocomposite was formed when the concentration of BNOA was 0.08 M and the molar ratio of Zn to Al, R = 2. Basal spacing of layered double hydroxide containing nitrate ions expanded from 8.9 to 19.5 Å in resulting of Zn–Al-BNOA nanocomposite was obtained indicates that beta-naphthoxyacetate was successfully intercalated into interlayer spaces of layered double hydroxide. It was also found out the BET surface area increased from 1.13 to 42.79 m2 g?1 for Zn–Al-LDH and Zn–Al-BNOA nanocomposite, respectively. The BJH average pore diameter of the synthesized nanocomposite is 199 Å which shows mesoporous-type of material. CHNS analysis shows the Zn–Al-BNOA nanocomposite material contains 36.2 % (w/w) of BNOA calculated based on the percentage of carbon in the sample. Release of BNOA from the lamella of Zn–Al-BNOA was controlled by the zeroth and first order kinetics at the beginning of the deintercalation process up to 200 min and controlled by pseudo-second order kinetics for the whole process. This study suggests that layered double hydroxide can be used as a carrier for organic acid herbicide controlled release formulation of BNOA.  相似文献   
5.
The effect of the frying temperature, frying duration and the addition of NaCl on the formation of 3‐monochloropropane‐1,2‐diol (3‐MCPD) esters and glycidyl esters (GE) in palm olein after deep frying was examined in this study. The eight frying systems were deep‐fat frying (at 160 and 180 °C) of chicken breast meat (CBM) (with 0, 1, 3 and 5% sodium chloride, NaCl) for 100 min/day for five consecutive days. All oil samples collected after each day were analyzed for 3‐MCPD ester, GE, and free fatty acid (FFA) contents, specific extinctions at 232 and 268 nm (K232 and K268), p‐anisidine value (pA), and fatty acid composition. There was a significant (p < 0.05) decrease in the 3‐MCPD esters and a significant (p < 0.05) decrease in the GE with the increasing of the frying duration. There were significant (p < 0.05) increases in the 3‐MCPD esters formed when the concentration of NaCl increased from 0 to 5%. The addition of NaCl to the CBM during deep frying had no significant effect on the GE generation. The FFA contents, K232 and K268 and pA showed that all the frying oils were within the safety limit.  相似文献   
6.
In this study, the phase inversion-based co-extrusion method was employed to fabricate a structural-improved electrolyte/anode dual-layer hollow fiber (HF) precursor, which was then co-sintered at 1450 °C. The electrolyte structures were thoroughly investigated by varying the loading of electrolyte material (i.e. Yttria-stabilized zirconia, YSZ) with differing particle sizes (i.e. micron, sub-micron, and nano-sized) during suspension preparation. The results showed that the most promising electrolyte layer with thin, dense, gas-tight, and defect-free properties was obtained by mixing 70% submicron-YSZ and 30% nano-YSZ in electrolyte suspension (E-0.7sub0.3nano). This electrolyte formulation co-extruded with a thick nickel-oxide-YSZ (NiO-YSZ) anode layer yielded the highest bending strength of 85 MPa, providing major mechanical strength to the HF. Besides that, the nitrogen permeability value at 2.87 × 10?6 mol m?2 s?1 Pa?1 suggested that the electrolyte was gas-tight, preventing fuel and oxidant transport. The fiber was then reduced to nickel (Ni)-cermet anode. It was developed to be a complete micro-tubular solid oxide fuel cell (MT-SOFC) by depositing the lanthanum strontium cobalt ferrite (LSCF)/YSZ cathode via brush painting on the dual-layer HF. The cell was fed with hydrogen gas and yielded an open-circuit voltage (OCV) as high as 1.06 V with maximum power density of 0.243 W cm?2, at 875 °C. Based on this test, it was found that the electrolyte structural-modified dual-layer hollow fiber-based MT-SOFC using mixed particle sizes may result in a promising OCV. However, the relatively low value for power density may be due to a less porous anode; thus, improvements in the anode's structure are required in future research.  相似文献   
7.
The optical band-gap energy (E(g)) is an important feature of semiconductors which determines their applications in optoelectronics. Therefore, it is necessary to investigate the electronic states of ceramic ZnO and the effect of doped impurities under different processing conditions. E(g) of the ceramic ZnO + xBi(2)O(3) + xTiO(2), where x = 0.5 mol%, was determined using a UV-Vis spectrophotometer attached to a Reflectance Spectroscopy Accessory for powdered samples. The samples was prepared using the solid-state route and sintered at temperatures from 1140 to 1260 °C for 45 and 90 minutes. E(g) was observed to decrease with an increase of sintering temperature. XRD analysis indicated hexagonal ZnO and few small peaks of intergranular layers of secondary phases. The relative density of the sintered ceramics decreased and the average grain size increased with the increase of sintering temperature.  相似文献   
8.
9.
10.
A new layered organic–inorganic nanohybrid material, zinc-aluminum-3,4-dicholorophenoxyacetate (N3,4-D) in which an agrochemical, 3,4-dichlorophenoxyacetic acid (3,4-D), is intercalated into zinc-aluminum-layered double hydroxide (ZAL), was synthesized by coprecipitation method. A well-ordered nanomaterial was formed with a percentage loading of 53.5% (w/w). Due to the inclusion of 3,4-D, basal spacing expanded from 8.9 Å in ZAL to 18.7 Å in N3,4-D. The Fourier transform infrared study shows that the absorption bands of the resulting nanohybrid composed of both the 3,4-D and ZAL further confirmed the intercalation episode. Thermal analysis shows that ZAL host enhances the thermal stability of 3,4-D. Controlled-release experiment shows that the release of 3,4-D in the aqueous media is in the order of phosphate > carbonate > sulfate > chloride. These studies demonstrate the successful intercalation of the 3,4-D and its controlled release property in various aqueous media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号