首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
化学工业   8篇
能源动力   2篇
无线电   1篇
一般工业技术   4篇
  2023年   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  1994年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
The technology for transesterification reactions between methyl esters and alcohols is well established by using classical homogeneous alkaline catalysts, which provide high conversion of methyl esters to specialty or nonindigenous esters. However, in certain products where the purity of the esters is of concern, the removal of homogeneous catalysts after the completion of the reaction is a challenge in terms of production cost and water footprint. Therefore, a study to investigate the potential of heterogeneous catalysts was conducted on reactions between methyl palmitate and triethanolamine. The degree of basicity and active surface area of calcium oxide (CaO), zinc oxide (ZnO), and magnesium oxide (MgO) were first characterized by using temperature-programmed desorption (TPD-CO2) and Brunauere–Emmett–Teller (BET), respectively. Among the metal oxides investigated, the CaO catalyst showed the best catalytic activity toward the transesterification process as it gave the highest conversion of methyl palmitate and yielded fatty esteramine compositions similar to the conventional homogeneous catalyst. The optimum transesterification condition by using the CaO catalyst utilized a lower vacuum system of approximately 200 mbar, which could minimize a considerable amount of energy consumption. Furthermore, low CaO dosage of 0.1% was able to give a conversion of 94.5% methyl ester and formed esteramine at 170 °C for 2 h. Therefore, the production of esterquats from esteramine may become more economically feasible through the methyl ester route by using the CaO catalyst, which can be recycled three times.  相似文献   
2.
Recently, a newly discovered Dicer-substrate siRNA (DsiRNA) demonstrates higher potency in gene silencing than siRNA but both suffer from rapid degradation, poor cellular uptake and chemical instability. Therefore, Tat-peptide was exploited to protect and facilitate their delivery into cells. In this study, Tat-peptide was complexed with siRNA or DsiRNA through simple complexation. The physicochemical properties (particle size, surface charge and morphology) of the complexes formed were then characterized. The ability of Tat-peptide to carry and protect siRNA or DsiRNA was determined by UV-Vis spectrophotometry and serum protection assay, respectively. Cytotoxicity effect of these complexes was assessed in V79 cell line. siRNA-Tat complexes had particle size ranged from 186?±?17.8 to 375?±?8.3?nm with surface charge ranged from ?9.3?±?1.0 to +13.5?±?1.0?mV, depending on the Tat-to-siRNA concentration ratio. As for DsiRNA-Tat complexes, the particle size was smaller than the ones complexed with siRNA, ranging from 176?±?8.6 to 458?±?14.7?nm. Their surface charge was in the range of +27.1?±?3.6 to +38.1?±?0.9?mV. Both oligonucleotide (ON) species bound strongly to Tat-peptide, forming stable complexes with loading efficiency of more than 86%. These complexes were relatively non cytotoxic as the cell viability of ~90% was achieved. In conclusion, Tat-peptide has a great potential as siRNA and DsiRNA vector due to the formation of stable complexes with desirable physical characteristics, low toxicity and able to carry high amount of siRNA or DsiRNA.  相似文献   
3.
Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyethyleneimine (PEI) for the delivery of antitumor drugs. The CA-PEI copolymer was synthesized via pairing mediated by N,N’-dicyclohexylcarbodiimide and N-hydroxysuccinimide using dichloromethane as a solvent. Fourier transform infrared and nuclear magnetic resonance analyses were performed to verify the formation of an amide linkage between CA and PEI and doxorubicin localization into the copolymer. Dynamic light scattering and transmission electron microscopy studies revealed that the copolymer could self-assemble into micelles with a spherical morphology and an average diameter of <200 nm. The CA-PEI copolymer was also characterized by X-ray diffraction and differential scanning calorimetry. Doxorubicin-loaded micelles were prepared by dialysis method. A drug release study showed reduced drug release with escalating drug content. In a cytotoxicity assay using human colorectal adenocarcinoma (DLD-1) cells, the doxorubicin-loaded CA-PEI micelles exhibited better antitumor activity than that shown by doxorubicin. This is the first study on CA-PEI micelles as doxorubicin carriers, and this study demonstrated that they are promising candidates as carriers for sustained targeted antitumor drug delivery system.  相似文献   
4.
Complexes of 4-alkoxystilbazoles with iridium and rhodium form stable Langmuir layers at the air-water interface even when the alkoxy chain is relatively short (C5–C12). The surface pressure-area isotherms indicate that condensed molecular monolayers are obtained. The area per molecule of each compound in its monolayer form is typically 0.60 nm2, which agrees well with the cross-sectional area of the [Ir(CO)2CI] or [Rh(CO)2CI] head group predicated using molecular models. This suggests that the molecules are oriented with the metal moiety close to the water surface and their alkoxystilbazole ‘rod’ protruding from the plane of the water surface. Such floating monolayers have been transferred on to solid substrates such as glass, aluminium (AI2O3/AI/Glass) and silicon (SiO2/Si) at relatively high speed (10 mm min ?1) to form Y-type LB assemblies. The UV–Visible absorption properties of these materials in solution and LB film form have been studied. LB films of these complexes yield bathochromically shifted spectra relative to the LB film spectrum of the uncomplexed stilbazole. Additionally, these spectra are often broader and hypsochromically shifted relative to their corresponding solution spectra as a result of the close molecular packing within the LB film and the associated dipole–dipole interactions. The electrically polar nature of the molecules described in this paper suggest that they may be suitable candidates for new pyroelectric materials. Thus the pyroelectric coefficient (the rate of change of electric polarisation with respect to temperature) has been measured for a polar multilayer LB film containing an iridium complex. A pyroelectric coefficient of 3.5 μCm?2K?1 (at 30 °C) has been measured, which is one of the highest reported valued for an LB film. Additionally, a low dielectric loss of around 0.01 has been found over the frequency range 50 Hz–1 kHz, indicating that such LB films may be usfeul materials for pyroelectric sensors.  相似文献   
5.
This article is concerned with the static and dynamic mechanical properties of high‐density polyethylene (HDPE) reinforced with sawdust (SD) at a strain rate of up to 103 s?1. In this study, the static and dynamic properties of HDPE/SD composites with different filler loadings of 5, 10, 15, 20, and 30 wt% SD were deliberated at different levels of strain rates (0.001, 0.01, 0.1, 650, 900, and 1100 s?1) using a conventional universal testing machine and the split Hopkinson pressure bar apparatus. The results showed that the stress–strain curves, yield behavior, stiffness, and strength properties of the HDPE/SD composites were strongly affected by both the strain rate and the filler loadings. Furthermore, the rate sensitivityof the HDPE/SD composites showed a great dependency on the applied strain rate, increasing as the strain rate increased. However, the thermal activation values showed a contrary trend. Meanwhile, for the postdamage analysis, the results showed that the applied strain rates influenced the deformation behavior of the tested HDPE/SD composites. Moreover, for the fractographic analysis at dynamic loading, the composites showed that all the specimens underwent a severe catastrophic deformation. J. VINYL ADDIT. TECHNOL., 24:162–173, 2018. © 2016 Society of Plastics Engineers  相似文献   
6.
This paper presents a numerical analysis of a micropolar fluid flow towards a permeable stretching/shrinking sheet in a porous medium. The governing nonlinear partial differential equations are transformed into a system of ordinary differential equations by a similarity transformation, before being solved numerically by a finite-difference scheme known as the Keller-box method. The effects of the governing parameters on the fluid flow and heat transfer characteristics are illustrated graphically. It is found that dual solutions exist for the shrinking case, whereas for the stretching case, the solution is unique.  相似文献   
7.
In defense-in-depth, humans have always been the weakest link in cybersecurity. However, unlike common threats, social engineering poses vulnerabilities not directly quantifiable in penetration testing. Most skilled social engineers trick users into giving up information voluntarily through attacks like phishing and adware. Social Engineering (SE) in social media is structurally similar to regular posts but contains malicious intrinsic meaning within the sentence semantic. In this paper, a novel SE model is trained using a Recurrent Neural Network Long Short Term Memory (RNN-LSTM) to identify well-disguised SE threats in social media posts. We use a custom dataset crawled from hundreds of corporate and personal Facebook posts. First, the social engineering attack detection pipeline (SEAD) is designed to filter out social posts with malicious intents using domain heuristics. Next, each social media post is tokenized into sentences and then analyzed with a sentiment analyzer before being labelled as an anomaly or normal training data. Then, we train an RNN-LSTM model to detect five types of social engineering attacks that potentially contain signs of information gathering. The experimental result showed that the Social Engineering Attack (SEA) model achieves 0.84 in classification precision and 0.81 in recall compared to the ground truth labeled by network experts. The experimental results showed that the semantics and linguistics similarities are an effective indicator for early detection of SEA.  相似文献   
8.
The pyroelectric and dielectric properties of glycolipid thin films have been investigated. The glycolipid under studied is (2-n-decyl-n-tetradecyl)-4-O-maltoside. From the thin film observations using polarizing optical microscopy, glycolipid molecules were found to align homeotropically, which results in non-zero temperature-dependent spontaneous polarization. The pyroelectric coefficient, dielectric constant, dielectric loss tangent and figure of merit of the glycolipid thin films are found to be in the range of 70-105 μC m− 2 K− 1, 5.9-16, 0.242-0.523 and 24-88 μC m− 2 K− 1 respectively, depending on the glycolipid concentration. Higher concentration of glycolipid renders higher pyroelectric coefficient but lower dielectric constant and dielectric loss tangent, which then results in a higher figure of merit.  相似文献   
9.
Diabetes cardiomyopathy is one of the key factors of mortality among diabetic patients around the globe. One of the prior contributors to the progression of diabetic cardiomyopathy is cardiac mitochondrial dysfunction. The cardiac mitochondrial dysfunction can induce oxidative stress in cardiomyocytes and was found to be the cause of majority of the heart morphological and dynamical changes in diabetic cardiomyopathy. To slow down the occurrence of diabetic cardiomyopathy, it is crucial to discover therapeutic agents that target mitochondrial-induced oxidative stress. Flavonoid is a plentiful phytochemical in plants that shows a wide range of biological actions against human diseases. Flavonoids have been extensively documented for their ability to protect the heart from diabetic cardiomyopathy. Flavonoids’ ability to alleviate diabetic cardiomyopathy is primarily attributed to their antioxidant properties. In this review, we present the mechanisms involved in flavonoid therapies in ameliorating mitochondrial-induced oxidative stress in diabetic cardiomyopathy.  相似文献   
10.
Dimethyl sulfate (DMS) is a potential carcinogen that may be formed during the production of α-sulfonated methyl ester (α-SME). To date, there have been no published analytical methods for quantification of DMS in palm oil-based α-SME. The objective of the method development was to establish a simple and reliable method for quantifying and monitoring DMS from palm oil-based α-SME. The sample preparation prior to analysis involved extracting DMS from α-SME using hexane. The gas chromatography–mass spectrometry (GC–MS) separation was performed on an Agilent MS-HP5 column (30 m × 320 μm × 0.25 μm). The MS signal was obtained in the selected ion monitoring (SIM) mode. The method was validated according to the International Conference on Harmonization (ICH) guidelines. The accuracy of the method was measured via percentage recoveries of DMS from spiked α-SME samples at spiking levels of (25, 125, 250, and 500) μg mL−1. The percentage recoveries for all spiking levels were found to be in the range of 88.6–97.4%. The repeatability and interday reproducibility were found to be satisfactory as the relative standard deviations (RSD) were within 11%. The method also has a good linear relationship as indicated by the coefficient of determination of 0.9996 over the range of 1.0–30 μg mL−1. The limits of detection (LOD) and quantification (LOQ) corresponded to 0.8 and 2.3 μg mL−1, respectively. The developed method demonstrated sufficient linearity, intraday and interday precision, sensitivity, and accuracy for determination of DMS in palm oil-based α-SME.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号