首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
电工技术   2篇
无线电   1篇
一般工业技术   2篇
冶金工业   1篇
  2016年   1篇
  2014年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  1993年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Optical tweezers are powerful tools for manipulating single DNA molecules using fluorescence microscopy, particularly in nanotechnology‐based DNA analysis. We previously proposed a manipulation technique using microstructures driven by optical tweezers that allows the handling of single giant DNA molecules of millimetre length that cannot be manipulated by conventional techniques. To further develop this technique, the authors characterised the microstructures quantitatively from the view point of fabrication and efficiency of DNA manipulation under a fluorescence microscope. The success rate and precision of the fabrications were evaluated. The results indicate that the microstructures are obtained in an aqueous solution with a precision ∼50 nm at concentrations in the order of 106 particles/ml. The visibility of these microstructures under a fluorescence microscope was also characterised, along with the elucidation of the fabrication parameters needed to fine tune visibility. Manipulating yeast chromosomal DNA molecules with the microstructures illustrated the relationship between the efficiency of manipulation and the geometrical shape of the microstructure. This report provides the guidelines for designing microstructures used in single DNA molecule analysis based on on‐site DNA manipulation, and is expected to broaden the applications of this technique in the future.Inspec keywords: DNA, molecular biophysics, fluorescence, optical microscopy, radiation pressure, biological techniquesOther keywords: optically driven microstructures, single DNA molecule analysis, fluorescence microscopy, optical tweezers, nanotechnology‐based DNA analysis, manipulation technique, aqueous solution, fine tune visibility, yeast chromosomal DNA molecules, geometrical shape, on‐site DNA manipulation  相似文献   
2.
In this paper, CMOS‐based low‐noise amplifiers with JFET‐CMOS technology for high‐resolution sensor interface circuits are presented. A differential difference amplifier (DDA) configuration is employed to realize differential signal amplification with very high input impedance, which is required for the front‐end circuit in many sensor applications. Low‐noise JFET devices are used as input pair of the input differential stages or source‐grounded output load devices, which are dominant in the total noise floor of DDA circuits. A fully differential amplifier circuit with pure CMOS DDA and three types of JFET‐CMOS DDAs were fabricated and their noise performances were compared. The results show that the total noise floor of the JFET‐CMOS amplifier was much lower compared to that of the pure CMOS configuration. The noise‐reduction effect of JFET replacement depends on the circuit configuration. The noise reduction effect by JFET device was maximum of about − 18 dB at 2.5 Hz. JFET‐CMOS technology is very effective in improving the signal‐to‐noise ratio (SNR) of a sensor interface circuit with CMOS‐based sensing systems. © 2008 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   
3.
A 15-year-old male with labial swelling, mouth ulcers and mucosal tags is reported. While the features were clinically consistent with oral Crohn's disease the patient proved to have a fatal T-cell lymphocytic lymphoma.  相似文献   
4.
This paper presents a ring oscillator with the function of the oscillation controlled for wireless sensor systems (WSSs). The proposed oscillator consists of a NAND gate, 4 inverters, and 1-, 3-, 9-times buffer stage. Operation of it is controlled by the NAND gate. The oscillator can reduce the power loss because the oscillator is oscillated during only high level input. The proposed oscillator was designed and fabricated by 2.5 μm CMOS technology, through which it is possible to realize a WSS on a single chip because a sensor and an oscillator can be fabricated concurrently.The frequency tuning range of the oscillator was found to be approximately 90–152 MHz and the output power of the oscillator was ?8.42 dBm. The measured phase noise is ?99.35 and ?102.59 dBc/Hz at 1 and 5 MHz offsets, respectively, from the carrier of 152 MHz. Power consumption of the oscillator is determined by the duty cycle of the input signal pulse, and the range of power consumption was measured as 1.5–45 mW at the duty cycle of 1.0.  相似文献   
5.
We have previously conducted a cohort study to investigate n‐3 polyunsaturated fatty acids (PUFAs) in red blood cells (RBCs) and risk of all‐cause mortality in hemodialysis (HD) patients over 5 years and found that n‐3 PUFAs, especially docosahexaenoic acid (DHA), might be an independent predictor of all‐cause mortality. In the present study, we extended the study for another 5 years to determine whether DHA levels in RBCs still predict the mortality of HD patients during a 10‐year study period. The study cohort consisted of 176 patients (64.1 ± 12.0 [mean ± standard deviation] years of age, 96 men and 80 women) under HD treatment. The fatty acid composition of patients' RBCs was analyzed by gas chromatography. During the study period of 10 years, 97 deaths occurred. After adjustment for 10 confounding factors, the hazard ratio of all‐cause mortality of the HD patients in the highest DHA tertile (>8.1%) was 0.52 (95% confidence interval 0.30–0.91) compared with those in the lowest DHA tertile (<7.2%). However, other n‐3 PUFAs such as eicosapentaenoic acid and docosapentaenoic acid (n‐3) did not reveal any significant correlations. The level of DHA in RBCs could be an independent predictor of all‐cause mortality in HD patients even during a long period of follow‐up.  相似文献   
6.
This paper presents the essentials of the development of an integrated smart microsensor system that has been developed to monitor the motion and vital signs of humans in various environments. Integration of RF transmitter technology with complementary metal‐oxide‐semiconductor/micro electro mechanical systems (CMOS/MEMS) microsensors is required to realize wireless smart microsensors for the monitoring system. Sensors for the measurement of body temperature, perspiration, heart rate (pressure sensor), and motion (accelerometers) are candidates for integration on the wireless smart microsensor system. In this paper, the development of radio frequency transmitter (RF) that will be integrated on wireless smart microsensors is presented. A voltage controlled RF‐CMOS oscillator (VCO) has been fabricated for the 300‐MHz frequency band applications. Also, spiral inductors for an LC resonator and an integrated antenna have been realized with a CMOS‐compatible metallization process. The essential RF components have been fabricated and evaluated experimentally. The fabricated CMOS VCO showed a conversion factor from voltage to frequency of about 81 MHz/V. After matching the characteristic impedance (50 Ω) of the on‐chip integrated antenna and the VCO output, more than 5 m signal transmission from the microchip antenna has been observed. The transmitter showed remarkable improvement in transmission power efficiency by correct matching with the microchip antenna. Essential technologies of the RF transmitter for the wireless smart microsensors have been successfully developed. Also, for the 300‐MHz band application, the integrated RF transmitter, with the CMOS oscillator and the on‐chip antenna, has been successfully demonstrated for the first time. Copyright © 2007 Institute of Electrical Engineers of Japan© 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号