首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4003篇
  免费   129篇
  国内免费   14篇
电工技术   279篇
综合类   11篇
化学工业   1098篇
金属工艺   121篇
机械仪表   98篇
建筑科学   78篇
矿业工程   7篇
能源动力   178篇
轻工业   379篇
水利工程   5篇
石油天然气   7篇
无线电   209篇
一般工业技术   799篇
冶金工业   469篇
原子能技术   97篇
自动化技术   311篇
  2023年   20篇
  2022年   31篇
  2021年   58篇
  2020年   38篇
  2019年   48篇
  2018年   63篇
  2017年   59篇
  2016年   72篇
  2015年   61篇
  2014年   109篇
  2013年   279篇
  2012年   152篇
  2011年   256篇
  2010年   193篇
  2009年   229篇
  2008年   216篇
  2007年   186篇
  2006年   168篇
  2005年   157篇
  2004年   138篇
  2003年   132篇
  2002年   126篇
  2001年   93篇
  2000年   75篇
  1999年   84篇
  1998年   170篇
  1997年   141篇
  1996年   93篇
  1995年   62篇
  1994年   86篇
  1993年   66篇
  1992年   44篇
  1991年   31篇
  1990年   31篇
  1989年   30篇
  1988年   27篇
  1987年   33篇
  1986年   20篇
  1985年   33篇
  1984年   23篇
  1983年   32篇
  1982年   33篇
  1981年   20篇
  1980年   13篇
  1979年   17篇
  1978年   13篇
  1977年   15篇
  1976年   31篇
  1975年   11篇
  1974年   7篇
排序方式: 共有4146条查询结果,搜索用时 31 毫秒
1.
To theoretically explore amorphous materials with a sufficiently low dielectric loss, which are essential for next-generation communication devices, the applicability of a nonequilibrium molecular dynamics simulation employing an external alternating electric field was examined using alkaline silicate glass models. In this method, the dielectric loss is directly evaluated as the phase shift of the dipole moment from the applied electric field. This method enabled us to evaluate the dielectric loss in a wide frequency range from 1 GHz to 10 THz. It was observed that the dielectric loss reaches its maximum at a few THz. The simulation method was found to qualitatively reproduce the effects of alkaline content and alkaline type on the dielectric loss. Furthermore, it reasonably reproduced the effect of mixed alkalines on the dielectric loss, which was observed in our experiments on sodium and/or potassium silicate glasses. Alkaline mixing was thus found to reduce the dielectric loss.  相似文献   
2.
The ITER magnet system consists of structurally linked sets of toroidal (TF) and poloidal (PF) field coils, central solenoid (CS), and various support structures. The coils are superconducting, force flow Helium cooled with a Kapton-Glass-Epoxy multilayer insulation system. The stored magnetic energy is about 100GJ in the TF system and 20GJ in the PF-CS. Coils and structure are maintained at 4 K by enclosing them in a vacuum cryostat. The cryostat, comprising an outer envelope to the magnets, forms most of the second radioactivity confinement barrier. The inner primary barrier is formed by the vacuum vessel, its ports and their extensions. To keep the machine size within acceptable bounds, it is essential that the magnets are in close proximity to both of the nuclear confinement barriers. The objective of the magnet design is that, although local damage to one of the barriers may occur in very exceptional circumstances, large scale magnet structural or thermal failure leading to simultaneous breaching of both barriers is not credible. Magnet accidents fall into three categories: thermal (which includes arcing arising from insulation failure and local overheating due to discharge failure in the event of a superconductor quench), structural (which includes component mechanical failure arising from material inadequacies, design errors and exceptional force patterns arising from coil shorts or control failures), and fluid (Helium release due to cooling line failure). After a preliminary survey to select initial faults conceivable within the present design, these faults are systematically analyzed to provide an assessment of the damage potential. The results of this damage assessment together with an assessment of the reliability of the monitoring and protective systems, shows that the magnets can operate with the required safety condition.  相似文献   
3.
Fracture toughness of adjacent flow weld lines, defined as weld lines that occur when two flow fronts meet and continue to flow together in the same direction (meld line or hot weld line), was evaluated by the single‐edge notched‐bend (SENB) method using three differently‐shaped obstructive pins. Although the fracture toughness varied depending upon the shapes of the pin, the values could be standardized as the distance from the meeting point of the two flow fronts flowing around the pin. The fracture toughness decreased drastically from the meeting point along the weld line and then slightly increased. These characteristic features could be explained by flow‐induced molecular orientation at the weld line interface. The molecules around the meeting point that were initially oriented parallel to the weld line due to fountain flow were able to relax, and then entanglement across the weld line interface developed because the flow stopped in the middle of the filling process, resulting in high fracture toughness. In contrast, the material at the downstream side of the weld line continued flowing during the filling process, being stretched along the flow direction. So, the molecular orientation at this area could not relax. In addition, the V‐notch shape, i.e., the depth and length at the surface of the weld line, which also varied depending on the shape of the obstacles, was considered to be identical when the meeting point was allowed to be a datum point. Thus, the meeting point was found to be a significant factor when the properties of weld lines are investigated. POLYM. ENG. SCI., 45:1059–1066, 2005. © 2005 Society of Plastics Engineers  相似文献   
4.
An on-chip 1-Mb SRAM suitable for embedding in the application processor used in mobile cellular phones was developed. This SRAM supports three operating modes - high-speed active mode, low-leakage low-speed active mode, and standby mode - and uses a subdivisional power-line control (SPC) scheme. The combination of three operating modes and the SPC scheme realizes low-power operation under actual usage conditions. It operates at 300 MHz, with leakage of 25 /spl mu/A/Mb in standby mode, and 50 /spl mu/A/Mb at the low-leakage active mode. This SRAM also uses a self-bias write scheme that decreases of minimum operating voltage by about 100 mV.  相似文献   
5.
Reduction of flash generated in a gas vent is of great concern for manufacturers of electronic parts. The present study proposes a theoretical model for flash generation through consideration of flow characteristics in a gas vent. The model predicts the factors controlling flash, i.e., material parameters such as zero‐shear viscosity, crystallization temperature, thermal conductivity, and heat capacity, and process parameters such as injection and mold wall temperatures, packing pressure, and the clearance of a gas vent. On the other hand, we measure the amount of flash generated in the molding of poly(phenylene sulfide) (PPS) composites containing glass fiber and spherical fillers (CaCO3 or Al2O3). Flash reduces with decreasing size of spherical fillers. These experimental data are successfully interpreted using the flash model. Polym. Eng. Sci., 45:198–206, 2005. © 2005 Society of Plastics Engineers  相似文献   
6.
A three‐dimensional flow simulation for epoxy casting has been developed. A control‐volume‐based finite‐element method is employed, containing a conservative upwind formulation for the advection terms and equal order interpolations for all variables. This simulation predicts the non‐isothermal and reactive flow behavior under the gravity. The viscosity and reaction‐rate parameters were estimated by using a dynamic rheometer and a differential scanning calorimeter. The predicted flow front advancement and temperature profiles in the calculation domain similar to the mold cavity were in close agreement with the corresponding experimental results. The variation of epoxy surface configuration with flow rate also showed the same tendency between the prediction and the experiment. This simulation seems to be applicable not only to the epoxy casting, but also to other molding processes of various thermoset resins. POLYM. ENG. SCI. 45:364–374, 2005. © 2005 Society of Plastics Engineers.  相似文献   
7.
The effect of CF4 plasma etching on diamond surfaces, with respect to treatment time, was investigated using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. SEM observations and Raman spectra indicated an increase in surface roughening on a scale of 10–20 nm, and an increase in crystal defect density was apparent with treatment time in the range of 10 s to 30 min. In contrast, alteration of the diamond surface terminations from oxygen to fluorine was found to be rather rapid, with saturation of the F/C atomic ratio estimated from XPS analysis after treatment durations of 1 min and more. The redox kinetics of Fe(CN)63−/4− was also found to be significantly modified after 10 s of CF4 plasma treatment. This behavior shows that C–F terminations predominantly affect the redox kinetics compared to the effect on the surface roughness and crystal defects. The double-layer capacitance (Cdl) of the electrolyte/CF4 plasma-treated boron-doped diamond interface was found to show a minimum value at 1 min of treatment. These results indicate that a short-duration CF4 plasma treatment is effective for the fabrication of fluorine-terminated diamond surfaces without undesirable surface damage.  相似文献   
8.
9.
Changes in the phase compositions and microstructures of magnesia-partially-stabilized zirconia (Mg-PSZ) were studied in water at 80–300 °C, 1 m HCl solutions at 80–140 °C and 1 m CH3COOH-CH3COONa buffer solutions at pH 3 and 80–140 °C for 10–40 days. The tetragonal to monoclinic phase transformation and the degradation of the fracture strength occurred in water above 200 °C. On the other hand, although no noticeable tetragonal to monoclinic phase transformation proceeded in 1 m HCl solutions and 1 m CH3COOH-CH3-COONa buffer solutions at pH 3 below 140 °C, the fracture strength of Mg-PSZ greatly degraded. The dissolution of Mg2+ ion was observed in water above 200 °C and in 1 m HCl solutions above 80 °C.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号