首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113194篇
  免费   10068篇
  国内免费   6102篇
电工技术   6727篇
技术理论   6篇
综合类   10360篇
化学工业   18109篇
金属工艺   6042篇
机械仪表   6995篇
建筑科学   8395篇
矿业工程   2638篇
能源动力   3016篇
轻工业   11000篇
水利工程   2352篇
石油天然气   4764篇
武器工业   942篇
无线电   13157篇
一般工业技术   11963篇
冶金工业   4700篇
原子能技术   1500篇
自动化技术   16698篇
  2024年   416篇
  2023年   1426篇
  2022年   2674篇
  2021年   3708篇
  2020年   2882篇
  2019年   2462篇
  2018年   2750篇
  2017年   3105篇
  2016年   2991篇
  2015年   4201篇
  2014年   5491篇
  2013年   6657篇
  2012年   7810篇
  2011年   8458篇
  2010年   7787篇
  2009年   7659篇
  2008年   7704篇
  2007年   7252篇
  2006年   7021篇
  2005年   5943篇
  2004年   4614篇
  2003年   3959篇
  2002年   4482篇
  2001年   3862篇
  2000年   2869篇
  1999年   2331篇
  1998年   1653篇
  1997年   1380篇
  1996年   1225篇
  1995年   1068篇
  1994年   783篇
  1993年   584篇
  1992年   485篇
  1991年   366篇
  1990年   281篇
  1989年   213篇
  1988年   193篇
  1987年   123篇
  1986年   89篇
  1985年   76篇
  1984年   64篇
  1983年   44篇
  1982年   31篇
  1981年   34篇
  1980年   36篇
  1979年   22篇
  1978年   10篇
  1977年   13篇
  1976年   22篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Fan  Deng-Ping  Huang  Ziling  Zheng  Peng  Liu  Hong  Qin  Xuebin  Van Gool  Luc 《国际自动化与计算杂志》2022,19(4):257-287
Machine Intelligence Research - This paper aims to conduct a comprehensive study on facial-sketch synthesis (FSS). However, due to the high cost of obtaining hand-drawn sketch datasets, there is a...  相似文献   
2.
Food Science and Biotechnology - Various hilling materials (rice hulls, pine sawdust, and perlite) were compared to produce sprout vegetables using beach silvertop (Glehnia littoralis Fr. Schm. ex...  相似文献   
3.
International Journal of Information Security - Machine learning techniques have been widely used and shown remarkable performance in various fields. Along with the widespread utilization of...  相似文献   
4.
With the continuous development of bionics, such as, geckos and virginia creeper with both superhydrophobic and super-adhesive, the surface wetting and super-adhesive properties of various porous materials have attracted extensive attention of the scientific and medical communities. Here, the honeycomb polyurethane (PU) porous films with strong adhesion were successfully prepared by microphase separation method and the effects of growth parameters on their microstructure and adhesive strength to ice were investigated. It was found that a high relative humidity (e.g., 100%) and a low solution concentration (e.g., 2%) facilitated the formation of ordered honeycomb PU porous films, and as-prepared PU pores with average pore diameter as small as 5 μm are better ordered and more uniform than these in related documents. Although the contact angle of water droplets on the surface of PU porous films increased from the premodification value of 85–130° to more than 160° after surface modification with polydopamine (PDA), the corresponding rolling angle remained approximately constant (180°), indicating that the surface of PU porous films has strong adhesion similar to geckos and virginia creeper. Furthermore, at lower temperature, the PU porous films exhibited the high adhesive strength of 142.13 kPa on ice, which was strongly dependent on the porous microstructures and surface compositions. The improved adhesive behavior to ice of honeycomb PU porous films modified with PDA provides new strategies for surface modification of materials and potential applications in medical domain.  相似文献   
5.
The development of efficient and stable oxygen evolution reaction (OER) catalysts is an ongoing challenge. In order to solve the problem of low oxygen evolution efficiency of the current OER catalysts, a novel material was synthesized by the incorporation of NiFeCr-LDH and MoS2, and its structural and electrochemical properties were also investigated. The introduction of MoS2 improves the electrochemical performance of NiFeCr-LDH. The polarization curve shows that the potential of composite material is only 1.50 V at a current density of 10 mA cm?2, which is far superior to commercial precious metal catalysts. In addition, the stability experiment shows that the composite material has excellent stability, and the current density has little change after 500 cycles. Furthermore, we found that some metal ions, such as Ni, Cr and Mo, exist in the form of high valence on the surface of NiFeCr-LDH@MoS2, which is also conducive to the occurrence of oxygen evolution reaction.  相似文献   
6.
As G protein coupled receptors, sphingosine-1-phosphate receptors (S1PRs) have recently gained attention for their role in modulating inflammatory bone loss diseases. Notably, in murine studies inhibiting S1PR2 by its specific inhibitor, JTE013, alleviated osteoporosis induced by RANKL and attenuated periodontal alveolar bone loss induced by oral bacterial inflammation. Treatment with a multiple S1PRs modulator, FTY720, also suppressed ovariectomy-induced osteoporosis, collagen or adjuvant-induced arthritis, and apical periodontitis in mice. However, most previous studies and reviews have focused mainly on how S1PRs manipulate S1P signaling pathways, subsequently affecting various diseases. In this review, we summarize the underlying mechanisms associated with JTE013 and FTY720 in modulating inflammatory cytokine release, cell chemotaxis, and osteoclastogenesis, subsequently influencing inflammatory bone loss diseases. Studies from our group and from other labs indicate that S1PRs not only control S1P signaling, they also regulate signaling pathways induced by other stimuli, including bacteria, lipopolysaccharide (LPS), bile acid, receptor activator of nuclear factor κB ligand (RANKL), IL-6, and vitamin D. JTE013 and FTY720 alleviate inflammatory bone loss by decreasing the production of inflammatory cytokines and chemokines, reducing chemotaxis of inflammatory cells from blood circulation to bone and soft tissues, and suppressing RANKL-induced osteoclast formation.  相似文献   
7.
The low overall survival rate of patients with pancreatic cancer has driven research to seek a new therapeutic protocol. Radiotherapy (RT) is frequently an option in the neoadjuvant or palliative settings for pancreatic cancer treatment. This study explored the effect of RT protocols on the tumor microenvironment (TME) and their consequent impact on anti-programmed cell death ligand-1 (PD-L1) therapy. Using a murine orthotopic pancreatic tumor model, UN-KC-6141, RT-disturbed TME was examined by immunohistochemical staining. The results showed that ablative RT is more effective than fractionated RT at recruiting T cells. On the other hand, fractionated RT induces more myeloid-derived suppressor cell infiltration than ablative RT. The RT-disturbed TME presents a higher perfusion rate per vessel. The increase in vessel perfusion is associated with a higher amount of anti-PD-L1 antibody being delivered to the tumor. Animal survival is increased by anti-PD-L1 therapy after ablative RT, with 67% of treated animals surviving more than 30 days after tumor inoculation compared to a median survival time of 16.5 days for the control group. Splenocytes isolated from surviving animals were specifically cytotoxic for UN-KC-6141 cells. We conclude that the ablative RT-induced TME is more suited than conventional RT-induced TME to combination therapy with immune checkpoint blockade.  相似文献   
8.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
9.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
10.
Neoantigen vaccines and adoptive dendritic cell (DC) transfer are major clinical approaches to initiate personalized immunity in cancer patients. However, the immunization efficacy is largely limited by the in vivo trajectory including neoantigens’ access to resident DCs and DCs’ access to lymph nodes (LNs). Herein, an innovative strategy is proposed to improve personalized immunization through neoantigen-loaded nanovaccines synergized with adoptive DC transfer. It is found that it enables selective delivery of neoantigens to resident DCs and macrophages by coating cancer cell membranes onto neoantigen-loaded nanoparticles. In addition, the nanovaccines promote the secretion of chemokine C-C motif ligand 2 (CCL2), CCL3, and C-X-C motif ligand 10 from macrophages, thus potentiating the access of transferred DCs to LNs. This immunization strategy enables coordinated delivery of identified neoantigens and autologous tumor lysate-derived undefined antigens, leading to initiation of antitumor T cell immunity in a personalized manner. It significantly inhibits tumor growth in prophylactic and established mouse tumor models. The findings provide a new vision for potentiating adoptive cell transfer by nanovaccines, which may open the door to a transformative possibility for improving personalized immunization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号