首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   17篇
  国内免费   1篇
电工技术   1篇
化学工业   39篇
金属工艺   2篇
机械仪表   7篇
建筑科学   12篇
能源动力   26篇
轻工业   31篇
无线电   35篇
一般工业技术   51篇
冶金工业   5篇
原子能技术   3篇
自动化技术   36篇
  2024年   1篇
  2023年   6篇
  2022年   18篇
  2021年   40篇
  2020年   25篇
  2019年   15篇
  2018年   17篇
  2017年   14篇
  2016年   19篇
  2015年   5篇
  2014年   14篇
  2013年   12篇
  2012年   1篇
  2011年   13篇
  2010年   11篇
  2009年   9篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
1.
The onset of hybrid alumina-based composites, which combines two or more nano-particles within the alumina matrix has already shown promising improvements in the matrix material. However, variations in mechanical properties including the optimum compositions that give improved properties faced with the development of alumina-based composites require further studies to understand the underlying mechanisms and synergistic effects of the nano-particle additions on the alumina matrix. In the current study, the structure and properties of Al?O?-graphene (0.5 wt%) and Al?O?–ZrO? (4 wt% and 10 wt%) composites fabricated via hot-pressing was studied as a baseline for multiple combinations. Even though the addition of 10 wt%ZrO? resulted in a 23% reduction in the grain size of the alumina matrix, the 4 wt%ZrO? addition resulted in a 14% increase in grain size as compared to the parent alumina matrix. X-ray diffraction analysis revealed that there was approximately 85% monoclinic (m-ZrO2) vs. 15% tetragonal (t-ZrO2) crystal structures in the A4ZrO? sample whilst the A10ZrO? had approximately 93% m-ZrO2 vs. 7% t-ZrO2. The high-volume fraction of the monoclinic crystal structures in the A10ZrO? accounts for the induced microcracks in the sample since the transition from the ductile-tetragonal to brittle-monoclinic is associated with the exertion of compressive stresses on the alumina matrix by the associated elastic volume expansion of m-ZrO2. Also, the addition of 0.5 wt%graphene resulted in about 37% reduction in the grain size of the alumina matrix, and approximately 10% increase in hardness as a result of the distribution of graphene along the grain boundaries of the parent alumina matrix, which restricts grain coalescence and growth during processing. Furthermore, an increase up to 115% and 164% were observed in the fracture toughness (KIC) with the inclusion of 0.5 wt%graphene and 10 wt%ZrO? respectively, which was primarily ascribed to the fine-grained microstructures and toughening mechanisms of the intergranular graphene and ZrO? particles.  相似文献   
2.
Pectin constituents, which were about 70 w/w% of extracellular polysaccharides (ECP) from a cell-suspension culture of Mentha, were purified by gel filtration chromatography, and their sugar composition and linkage were investigated. Two major constituents identified were (1-->3)-linked galactan carrying arabinosyl residues on C-6 and (1-->4)-alpha-linked galacturonan partially interspersed with (1-->2)-linked rhamnosyl resides. Acetylated or methylated pectins were not identified on 1H-NMR analysis.  相似文献   
3.
The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries (ASSLBs). Because of their advantages in safety, working temperature, high energy density, and packaging, ASSLBs can develop an ideal energy storage system for modern electric vehicles (EVs). A solid electrolyte (SE) model must have an economical synthesis approach, exhibit electrochemical and chemical stability, high ionic conductivity, and low interfacial resistance. Owing to its highest conductivity of 17 mS·cm-1, and deformability, the sulfide-based Li7P3S11 solid electrolyte is a promising contender for the high-performance bulk type of ASSLBs. Herein, we present a current glimpse of the progress of synthetic procedures, structural aspects, and ionic conductivity improvement strategies. Structural elucidation and mechanistic approaches have been extensively discussed by using various characterization techniques. The chemical stability of Li7P3S11 could be enhanced via oxide doping, and hard and soft acid/base (HSAB) concepts are also discussed. The issues to be undertaken for designing the ideal solid electrolytes, interfacial challenges, and high energy density have been discoursed. This review aims to provide a bird's eye view of the recent development of Li7P3S11-based solid-state electrolyte applications and explore the strategies for designing new solid electrolytes with a target-oriented approach to enhance the efficiency of high energy density all-solid-state lithium batteries.  相似文献   
4.
International Journal of Control, Automation and Systems - The surface temperature of workpieces in a multi-temperature zone sintering furnace is an important parameter to characterize the...  相似文献   
5.
To grapple with multidrug resistant bacterial infections, implementations of antibacterial nanomedicines have gained prime attention of the researchers across the globe. Nowadays, zinc oxide (ZnO) at nano‐scale has emerged as a promising antibacterial therapeutic agent. Keeping this in view, ZnO nanostructures (ZnO‐NS) have been synthesised through reduction by P. aphylla aqueous extract without the utilisation of any acid or base. Structural examinations via scanning electron microscopy (SEM) and X‐ray diffraction have revealed pure phase morphology with highly homogenised average particle size of 18 nm. SEM findings were further supplemented by transmission electron microscopy examinations. The characteristic Zn–O peak has been observed around 363 nm using ultra‐violet–visible spectroscopy. Fourier‐transform infrared spectroscopy examination has also confirmed the formation of ZnO‐NS through detection of Zn–O bond vibration frequencies. To check the superior antibacterial activity of ZnO‐NS, the authors'' team has performed disc diffusion assay and colony forming unit testing against multidrug resistant E. coli, S. marcescens and E. cloacae. Furthermore, protein kinase inhibition assay and cytotoxicity examinations have revealed that green fabricated ZnO‐NS are non‐hazardous, economical, environmental friendly and possess tremendous potential to treat lethal infections caused by multidrug resistant pathogens.Inspec keywords: nanomedicine, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, scanning electron microscopy, X‐ray diffraction, antibacterial activity, transmission electron microscopy, particle size, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, enzymes, biochemistry, molecular biophysics, microorganisms, drugs, toxicology, bonds (chemical), semiconductor growth, nanofabrication, vibrational modesOther keywords: green synthesised zinc oxide nanostructures, Periploca aphylla extract, antibacterial potential, multidrug resistant pathogens, multidrug resistant bacterial infections, antibacterial nanomedicines, P. aphylla aqueous extract, structural examinations, scanning electron microscopy, X‐ray diffraction, pure phase morphology, homogenised average particle size, SEM, transmission electron microscopy, Fourier‐transform infrared spectroscopy, bond vibration frequency, antibacterial activity, disc diffusion assay, colony forming unit testing, S. marcescens, E. cloacae, E. coli, ultraviolet‐visible spectroscopy, protein kinase inhibition assay, cytotoxicity, lethal infections, ZnO  相似文献   
6.
The demand for cloud computing has increased manifold in the recent past. More specifically, on-demand computing has seen a rapid rise as organizations rely mostly on cloud service providers for their day-to-day computing needs. The cloud service provider fulfills different user requirements using virtualization - where a single physical machine can host multiple Virtual Machines. Each virtual machine potentially represents a different user environment such as operating system, programming environment, and applications. However, these cloud services use a large amount of electrical energy and produce greenhouse gases. To reduce the electricity cost and greenhouse gases, energy efficient algorithms must be designed. One specific area where energy efficient algorithms are required is virtual machine consolidation. With virtual machine consolidation, the objective is to utilize the minimum possible number of hosts to accommodate the required virtual machines, keeping in mind the service level agreement requirements. This research work formulates the virtual machine migration as an online problem and develops optimal offline and online algorithms for the single host virtual machine migration problem under a service level agreement constraint for an over-utilized host. The online algorithm is analyzed using a competitive analysis approach. In addition, an experimental analysis of the proposed algorithm on real-world data is conducted to showcase the improved performance of the proposed algorithm against the benchmark algorithms. Our proposed online algorithm consumed 25% less energy and performed 43% fewer migrations than the benchmark algorithms.  相似文献   
7.
8.
9.
Different nanostructures of TiO2 play an important role in the photocatalytic and photoelectronic applications. TiO2 nanotubes (TNTs) have received increasing attention for these applications due to their unique physicochemical properties. Focusing on highly functional TNTs (HF‐TNTs) for photocatalytic and photoelectronic applications, this study describes the facile hydrothermal synthesis of HF‐TNTs by using commercial and cheaper materials for cost‐effective manufacturing. To prove the functionality and applicability, these TNTs are used as scattering structure in dye‐sensitized solar cells (DSSCs). Photocatalytic, optical, Brunauer‐Emmett‐Teller (BET), electrochemical impedance spectrum, incident‐photon‐to‐current efficiency, and intensity‐modulated photocurrent spectroscopy/intensity‐modulated photovoltage spectroscopy characterizations are proving the functionality of HF‐TNTs for DSSCs. HF‐TNTs show 50% higher photocatalytic degradation rate and also 68% higher dye loading ability than conventional TNTs (C‐TNTs). The DSSCs having HF‐TNT and its composite‐based multifunctional overlayer show effective light absorption, outstanding light scattering, lower interfacial resistance, longer electron lifetime, rapid electron transfer, and improved diffusion length, and consequently, J SC, quantum efficiency, and record photoconversion efficiency of 10.1% using commercial N‐719 dye is achieved, for 1D‐based DSSCs. These new and highly functional TNTs will be a concrete fundamental background toward the development of more functional applications in fuel cells, dye‐sensitized solar cells, Li‐ion batteries, photocatalysis process, ion‐exchange/adsorption process, and photoelectrochemical devices.  相似文献   
10.
The Co1?x Zn x (x=0.4?0.5) nanorods were synthesized via an AC electrochemical deposition method into anodized aluminum oxide (AAO) templates at different voltages ranging from 10 to 18 V, and nanorods of varying concentrations of Co and Zn were obtained. The characterization tools were used to examine different aspects of nanorods, e.g., shape, size, morphology, chemical composition, and magnetic behavior. Scanning electron microscope (SEM) images show that CoZn nanorods have length L=1μm and diameter d=50 nm. The grain size was calculated to be 25.4 nm using an X-ray diffraction (XRD) technique. The XRD also shows some other phases of ZnCoO. The M?H loops measured by a vibrating sample magnetometer (VSM) at room temperature show pure ferromagnetic behavior at all AC potentials. The nanorods show magnetic isotropic behavior due to strong magnetic interactions and presence of random nanorods. The potential-dependent coercivity H c and saturation magnetization M s show a non-linear curve which is explained on the basis of magnetic islands and domain wall pinning. This study is useful to tune the magnetic properties of nanorods by a simple and low-cost technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号