首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学工业   10篇
能源动力   2篇
轻工业   6篇
无线电   1篇
一般工业技术   5篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Metal micro-/nano hollow spheres have been widely applied in numerous fields during the last decade. This review will only focus on the synthetic strategies to synthesize hollow spherical structures in the enhancement of their electrocatalytic activity, especially the metal hollow spherical materials. We present a comprehensive overview of synthetic strategies for metal hollow spherical structures which have been approached specifically in electrochemical reactions. These synthetic methods are mainly categorized as hard templates, soft templates, sacrificial templates and without templates. The review further includes electrocatalytic approaches of hollow spherical metals in different electrochemical processes, especially the methanol electro-oxidation reaction for methanol fuel cell application and hydrogen and oxygen evolution reactions in water electrolyzer, as metal hollow spherical materials are especially applied in these specific reactions.  相似文献   
2.
Pure TiO2 hollow spheres were prepared by using poly(styrene-methacrylic acid) latex particles as template; thereafter, titania hollow spheres were coated by platinum with an appropriate amount of choloroplatinic acid solution to obtain Pt/TiO2 catalysts. The morphology and structure of nonstructural Pt/TiO2 hollow spheres were characterized by BET, XRD, TGA, SEM and TEM analysis. In the samples, a remarkably uniform layer of Pt consisting of particles from 5 to 70 nm in size was formed over TiO2 hollow spheres. We found the electrocatalytic nature of the samples by cyclic voltammetric experiment in acidic solution. The anodic peak current density of 20 wt% Pt-loaded TiO2 hollow particles was observed 2.5 times higher than that of 5 wt% Pt/TiO2 in the same experimental condition. Also, the anodic current density of 20 wt% Pt/TiO2 hollow spheres calcined at various temperatures followed the order: 400 °C≈500 °C>600 °C. The electrocatalytic activity of the Pt-loaded TiO2 hollow spheres depends on the amount of atomic platinum present in the sample; a higher concentration of platinum results in a larger current density value in anodic sweep, resulting in more oxygen production during electrolysis. Pt/TiO2 hollow sphere catalysts have also shown long term electrocatalytic stability in acidic media.  相似文献   
3.
Nanomaterials, recently have found burgeoning attention in the field of agriculture, owing to the positive correlation between nanoparticle (NP) application and the enhanced nutritional status of the applied plants. A wide range of NPs, namely carbon‐based NPs, titanium dioxide NPs, silica NPs etc. has been found to influence plants in a positive way by increasing their nutrient uptake ratio, nutrient usage efficiency, among others. All these attributes have paved the way for possible improvement in plant growth, development, vigour etc. through the use of these NPs, mainly as nanofertiliser. In view of all these, it can also be concluded that in the global scenario of increased demand of food production and supply in the coming years, nanotechnology promises to play a critical role. In this review, an attempt has been made to consolidate all the positive trends with respect to application of NPs on plants, along with their probable mechanism of action, which may provide a comprehensive insight for researchers working in this field.Inspec keywords: reviews, nanoparticles, agriculture, nanotechnology, titanium compounds, crops, nanofabrication, fertilisers, food products, nanobiotechnologyOther keywords: nanotechnological interventions, plant growth, positive correlation, nanoparticle application, enhanced nutritional status, applied plants, carbon‐based NPs, titanium dioxide NPs, silica NPs, influence plants, nutrient uptake ratio, nutrient usage efficiency, positive trends  相似文献   
4.

Synthesis of nitrogen-doped graphene (NDG) via chemical vapor deposition (CVD) using phthalocyanine, a solid precursor containing carbon and nitrogen, is reported. The effect of the growth parameters (temperature, time, and carrier gas) on the surface morphology, dopant configuration, and conductivity of the films was studied. The NDG films were synthesized at different substrate temperatures of 1050 °C, 950 °C, and 850 °C for different growth times of 5–15 min in the presence of an Ar?+?H2 gas mixture. Significantly, pyrrolic-N type defects are observed predominantly after 5 min of growth time. At 1050 °C, pyrrolic N content is around 45.4% after 5 min of growth which decreased to 24.1% after 15 min of growth, while the graphitic-N content increased from 41.2 to 76% at the same time. It is demonstrated that the conversion of pyrrolic type of nitrogen to graphitic nitrogen defects can be arrested by changing the carrier gas from Ar?+?H2 to Ar. The pyrrolic-N content increased to 64% by changing the gas from Ar?+?H2 to Ar at 15 min. The electrolyte gated field-effect transistors were fabricated using the obtained films, and dopant-dependent mobility was observed. The mobility for pyrrolic-N-dominated film is 13.6 cm2 V?1 s?1 increasing to 62.8 cm2 V?1 s?1 for graphitic-N-dominated film.

  相似文献   
5.

Link adaptation technique, in which the modulation and coding used in a communication system is changed as per the channel conditions is a very well investigated topic for link throughput maximization with widespread application in wireless access networks. Most of the known algorithms dynamically adjust transmitter data rate by comparing instantaneous SNR with pre-defined SNR switching thresholds, in order to maximize throughput while maintaining the desired quality of service. However, the use of incorrect or stale values of these pre-defined switching thresholds often leads to selection of erroneous modulation and coding schemes resulting in unsatisfactory throughput or quality of service. This work introduces a novel scheme which achieves the maximum possible throughput while maintaining the target quality of service by dynamically acquiring the threshold values of different modulation and coding schemes used in the system for a given value of block error rate based on measurement at the receiver. This helps in keeping the threshold look up table up to date, so that proper threshold values for mode switching is present for all channel conditions. Also, a relationship between the throughput and the accuracy of the threshold value calculation is provided so that these can be optimized depending on the user requirements. The performance evaluation shows that the proposed system outperforms the conventional link adaptation in various operating scenarios where pre-determined look up tables are not available.

  相似文献   
6.
Using scattering-type near-field infrared microscopy in combination with a free-electron laser, intersublevel transitions in buried single InAs quantum dots are investigated. The experiments are performed at room temperature on doped self-assembled quantum dots capped with a 70 nm GaAs layer. Clear near-field contrast of single dots is observed when the photon energy of the incident beam matches intersublevel transition energies, namely the p-d and s-d transition of conduction band electrons confined in the dots. The observed room-temperature line width of 5-8 meV of these resonances in the mid-infrared range is significantly below the inhomogeneously broadened spectral lines of quantum dot ensembles. The experiment highlights the strength of near-field microspectroscopy by demonstrating signals from bound-to-bound transitions of single electrons in a probe volume of the order of (100 nm)(3).  相似文献   
7.
8.
Multi-shelled NiO/Ni/Graphene and Co3O4/Co/Graphene nano-spheres for high performance electrocatalytic activity in water electrolysis have been synthesized using multi-step solvothermal process. The synthesis process was derived by Metal-Organic-Framework (MOF) with the successive carbonization and oxidation treatments, which results into the formation of NiO/Ni and Co3O4/Co nano-crystalline particles with a coverage of graphene shell. In the present work, the effect of variation in concentration of polyvinyl pyrrole (PVP) during synthesis has also been executed. XRD studies were confirmed the formation of Co0 and Co3O4 in Co3O4/Co/Graphene sample and Ni0 and NiO in NiO/Ni/Graphene. In both cases, the surface area values showed inclining nature with increase in the amount of PVP, till 1.21 g and 1.31 g during their synthesis for nickel and cobalt, respectively. Moreover, the nano-materials could not sustain their spherical shape above the optimal concentration of PVP during synthesis. The optimal concentration of PVP has been determined as 1.21 and 1.31 g in the nickel and cobalt nano-sphere formation, respectively. The SEM and TEM images have affirmed the morphological transformations from the MOFs to MxOy/M/graphene structures. The average diameter of MOFs got shrank down from 60 – 70 nm to 20–30 nm in MxOy/M/graphene nanospheres. It get decreased above the optimum concentration of PVP. The highest surface area value reached to 151.3 m2/g in the Co3O4/Co/graphene prepared with 1.31 g of PVP, whereas same with nickel it touched to maximum value of 146.5 m2/g with PVP concentration of 1.21 g. Both the materials were exhibited excellent electrocatalytic activity in HER and OER during water electrolysis in acidic media, however, Cobalt catalysts performed better in hydrogen production. The anodic and cathodic peak current density has reached maximum value of 50 and 30 A cm?2 in presence of cobalt catalysts (with 1.31 g of PVP). The performance of Co3O4/Co/graphene nano-sphere (1.31 g PVP) is evaluated up to 10 A cm?2, whereas this value is only analyzed as 3 A cm?2 in the case of cobalt non-sphere electrocatalysts during anodic polarization. All the hollow spherical nano-electrocatalysts have shown the electrocatalytic stability during 84 h long potentiometric study.  相似文献   
9.
Tyagi  Astha  Biswas  Jayeeta  Ghosh  Kunal  Kottantharayil  Anil  Lodha  Saurabh 《SILICON》2022,14(4):1663-1670
Silicon - Carrier selective contact (CSC) architecture is one of several promising candidates for high-efficiency silicon solar cells operating close to the thermodynamic limit. However, an...  相似文献   
10.
Compositional interplay of two different cobalt phosphates (Co(H2PO4)2; Co‐DP and Co(PO3)2; Co‐MP) loaded on morphologically engineered high surface area nanocarbon leads to an increased electrocatalytic efficiency for oxygen evolution reaction (OER) in near neutral conditions. This is reflected as significant reduction in the onset overpotential (301 mV) and enhanced current density (30 mA cm?2 @ 577 mV). In order to achieve uniform surface loading, organic‐soluble thermolabile cobalt‐bis(di‐tert‐butylphosphate) is synthesized in situ inside the nanocarbon matrix and subsequently pyrolyzed at 150 °C to produce Co(H2PO4)2/Co(PO3)2 (80:20 wt%). Annealing this sample at 200 or 250 °C results in the redistribution of the two phosphate systems to 55:45 or 20:80 (wt%), respectively. Detailed electrochemical measurements clearly establish that the 55:45 (wt%) sample prepared at 200 °C performs the best as a catalyst, owing to a relay mechanism that enhances the kinetics of the 4e? transfer OER process, which is substantiated by micro‐Raman spectroscopic studies. It is also unraveled that the engineered nanocarbon support simultaneously enhances the interfacial charge‐transfer pathway, resulting in the reduction of onset overpotential, compared to earlier investigated cobalt phosphate systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号