首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88064篇
  免费   7434篇
  国内免费   4067篇
电工技术   5094篇
技术理论   13篇
综合类   5894篇
化学工业   15193篇
金属工艺   4983篇
机械仪表   5475篇
建筑科学   7336篇
矿业工程   2588篇
能源动力   2530篇
轻工业   5818篇
水利工程   1598篇
石油天然气   5860篇
武器工业   602篇
无线电   9882篇
一般工业技术   10918篇
冶金工业   4243篇
原子能技术   980篇
自动化技术   10558篇
  2024年   280篇
  2023年   1384篇
  2022年   2261篇
  2021年   3358篇
  2020年   2630篇
  2019年   2247篇
  2018年   2553篇
  2017年   2880篇
  2016年   2606篇
  2015年   3352篇
  2014年   4466篇
  2013年   5156篇
  2012年   5819篇
  2011年   6328篇
  2010年   5302篇
  2009年   5059篇
  2008年   5009篇
  2007年   4901篇
  2006年   4898篇
  2005年   4197篇
  2004年   2835篇
  2003年   2562篇
  2002年   2374篇
  2001年   2176篇
  2000年   2218篇
  1999年   2365篇
  1998年   1873篇
  1997年   1551篇
  1996年   1418篇
  1995年   1244篇
  1994年   1066篇
  1993年   741篇
  1992年   571篇
  1991年   447篇
  1990年   396篇
  1989年   291篇
  1988年   218篇
  1987年   133篇
  1986年   125篇
  1985年   65篇
  1984年   55篇
  1983年   31篇
  1982年   49篇
  1981年   29篇
  1980年   20篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
1.
Xiao  Zhu  Chen  Yanxun  Jiang  Hongbo  Hu  Zhenzhen  Lui  John C. S.  Min  Geyong  Dustdar  Schahram 《Wireless Networks》2022,28(7):3305-3322
Wireless Networks - Unmanned aerial vehicles (UAV) have been widely used in various fields because of their high mobility and portability. At the same time, due to the rapid development of...  相似文献   
2.
3.
Ripe carambolas are hard to store and transport, while freeze-dried ones are easy to store. However, its long production time leads to higher costs. This study shows that high hydrostatic pressure (HHP) treatment could shorten the freeze-drying time of carambola slices. After HHP treatment (25–250 MPa), the drying time of the fresh sample can be shortened by 33.3–44.4% and the distribution of water and pigment in tissues is much uniform. With the increment of the pressure, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging rate are increased. At 250 MPa, the total phenolic content (TPC) increased from 11.34 to 13.36 mg GAE g−1, and the total flavonoid content (TFC) of the control sample was increased from 10.77 to 12.73 mg RE g−1. Compared with the untreated sample, HHP treatment can enhance the flavour and shorten the freeze-drying time. This work guides the application of HHP technology for drying food processing.  相似文献   
4.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
5.
Yarn-dyed fabric is often woven from warp and weft yarns in the same color depth to ensure a uniform color appearance. The difference in color depth between warp and weft tends to result in the uneven color of the yarn-dyed fabric. This article aims to establish a color tolerance for yarn-dyed fabric that can be woven with a qualified color appearance but from the warp and weft yarns in different color depths. A total of 27 yarn-dyed fabric samples in three color series (red, yellow, and blue) were evaluated by using the yarn-dyed fabric from warp and weft yarns in the same color depth of 2% (on weight of fabric, owf) as the standard. Visual assessment and instrumental measurement of color were carried out to establish the color tolerance ellipse that was defined as CMC (Color Measurement Committee) color differences (2:1) of no more than 1.00. It was found that the color strengths (K/S) and color differences (ΔECMC(2:1)) of these fabric samples for each color series had linear relationships with the color depths of warp and weft yarns. The color tolerance ellipses indicated that, even though the warp and weft yarns had an apparent color difference, they could be woven in fabrics with relatively uniform color appearance and meet the requirements for yarn-dyed fabric. This work provided valuable insight into the production of qualified yarn-dyed fabrics from unqualified dyed yarns.  相似文献   
6.
With the continuous development of bionics, such as, geckos and virginia creeper with both superhydrophobic and super-adhesive, the surface wetting and super-adhesive properties of various porous materials have attracted extensive attention of the scientific and medical communities. Here, the honeycomb polyurethane (PU) porous films with strong adhesion were successfully prepared by microphase separation method and the effects of growth parameters on their microstructure and adhesive strength to ice were investigated. It was found that a high relative humidity (e.g., 100%) and a low solution concentration (e.g., 2%) facilitated the formation of ordered honeycomb PU porous films, and as-prepared PU pores with average pore diameter as small as 5 μm are better ordered and more uniform than these in related documents. Although the contact angle of water droplets on the surface of PU porous films increased from the premodification value of 85–130° to more than 160° after surface modification with polydopamine (PDA), the corresponding rolling angle remained approximately constant (180°), indicating that the surface of PU porous films has strong adhesion similar to geckos and virginia creeper. Furthermore, at lower temperature, the PU porous films exhibited the high adhesive strength of 142.13 kPa on ice, which was strongly dependent on the porous microstructures and surface compositions. The improved adhesive behavior to ice of honeycomb PU porous films modified with PDA provides new strategies for surface modification of materials and potential applications in medical domain.  相似文献   
7.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
8.
Mercury, lead, and cadmium are among the most toxic and carcinogenic heavy metal ions (HMIs), posing serious threats to the sustainability of aquatic ecosystems and public health. There is an urgent need to remove these ions from water by a cheap but green process. Traditional methods have insufficient removal efficiency and reusability. Structurally robust, large surface-area adsorbents functionalized with high-selectivity affinity to HMIs are attractive filter materials. Here, an adsorbent prepared by vulcanization of polyacrylonitrile (PAN), a nitrogen-rich polymer, is reported, giving rise to PAN-S nanoparticles with cyclic π-conjugated backbone and electronic conductivity. PAN-S can be coated on ultra-robust melamine (ML) foam by simple dipping and drying. In agreement with hard/soft acid/base theory, N- and S-containing soft Lewis bases have strong binding to Hg2+, Pb2+, Cu2+, and Cd2+, with extraordinary capture efficiency and performance stability. Furthermore, the used filters, when collected and electrochemically biased in a recycling bath, can release the HMIs into the bath and electrodeposit on the counter-electrode as metallic Hg0, Pb0, Cu0, and Cd0, and the PAN-S@ML filter can then be reused at least 6 times as new. The electronically conductive PAN-S@ML filter can be fabricated cheaply and holds promise for scale-up applications.  相似文献   
9.
Optical imaging has played a pivotal role in deciphering in vivo bioinformatics but is limited by shallow penetration depth and poor imaging performance owing to interfering tissue autofluorescence induced by concurrent photoexcitation. The emergence of near-infrared (NIR) self-luminescence imaging independent of real-time irradiation has timely addressed these problems. There are two main kinds of self-luminescent agents, namely inorganic and organic luminophores. Inorganic luminophores usually suffer from long-term biotoxicity concerns resulting from potential heavy-metal ions leakage and nonbiodegradability, which hinders their further translational application. In contrast, organic luminophores, especially organic semiconducting luminophores (OSLs) with good biodegradable potential, tunable design, and outstanding optical properties, are preferred in biological applications. This review summarizes the recent progress of OSLs used in NIR afterglow, chemiluminescence, and bioluminescence imaging. Molecular manipulation and nanoengineering approaches of OSLs are discussed, with emphasis on strategies that can extend the emission wavelength from visible to NIR range and amplify luminescence signals. This review concludes with a discussion of current challenges and possible solutions of OSLs in the self-luminescence field.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号