首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   28篇
电工技术   2篇
化学工业   50篇
金属工艺   2篇
机械仪表   11篇
建筑科学   15篇
能源动力   5篇
轻工业   47篇
水利工程   5篇
无线电   7篇
一般工业技术   40篇
冶金工业   55篇
自动化技术   32篇
  2023年   3篇
  2022年   7篇
  2021年   10篇
  2020年   12篇
  2019年   4篇
  2018年   16篇
  2017年   12篇
  2016年   13篇
  2015年   14篇
  2014年   11篇
  2013年   8篇
  2012年   12篇
  2011年   15篇
  2010年   10篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   8篇
  2002年   6篇
  2001年   5篇
  1999年   2篇
  1998年   22篇
  1997年   13篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1976年   4篇
  1975年   2篇
  1973年   1篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
1.
2.
Eicosapentaenoic acid (EPA, 20∶5n-3) was obtained from the marine microalgaePhaeodactylum tricornutum by a three-step process: fatty acid extraction by direct saponification of biomass, polyunsaturated fatty acid (PUFA) concentration by formation of urea inclusion compounds, and EPA isolation by semipreparative high-performance liquid chromatography (HPLC). Alternatively, EPA was obtained by a similar two-step process without the PUFA concentration step by the urea method. Direct saponification of biomass was carried out with two solvents that contained KOH for lipid saponification. An increase in yield was obtained because the problems associated with emulsion formation were avoided by separating the biomass from the soap solution before adding hexane for extraction of insaponifiables. The most efficient solvent, ethanol (96%) at 60°C for 1 h, extracted 98.3% of EPA. PUFA were concentrated by the urea method with a urea/fatty acid ratio of 4∶1 at a crystallization temperature of 28°C and by using methanol and ethanol as urea solvents. An EPA concentration ratio of 1.73 (55.2∶31.9) and a recover yield of 78.6% were obtained with methanol as the urea solvent. This PUFA concentrate was used to obtain 93.4% pure EPA by semipreparative HPLC with a reverse-phase, C18, 10 mm i.d.×25-cm column and methanol/water (1% acetic acid), 80∶20 w/w, as the mobile phase. Eighty-five percent of EPA loaded was recovered, and 65.7% of EPA present inP. tricornutum biomass was recovered in highly pure form by this three-step downstream process. Alternatively, 93.6% pure EPA was isolated from the fatty acid extract (without the PUFA concentration step) with 100% EPA recovery yield. This two-step process increases the overall EPA yield to 98.3%, but it is only possible to obtain 20% as much EPA as that obtained by three-step downstream processing.  相似文献   
3.
Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL‐100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high‐resolution soft X‐ray spectroscopy. Finally, a cell penetration study using the radio‐labeled antitumor agent gemcitabine monophosphate (3H‐GMP)‐loaded MIL‐100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.  相似文献   
4.
This paper presents a parameterized shared-memory scheme for parameterized metaheuristics. The use of a parameterized metaheuristic facilitates experimentation with different metaheuristics and hybridation/combinations to adapt them to the particular problem we are working with. Due to the large number of experiments necessary for the metaheuristic selection and tuning, parallelism should be used to reduce the execution time. To obtain parallel versions of the metaheuristics and to adapt them to the characteristics of the parallel system, a unified parameterized shared-memory scheme is developed. Given a particular computational system and fixed parameters for the sequential metaheuristic, the appropriate selection of parameters in the unified parallel scheme eases the development of parallel efficient metaheuristics.  相似文献   
5.
We describe a novel quadrotor Micro Air Vehicle (MAV) system that is designed to use computer vision algorithms within the flight control loop. The main contribution is a MAV system that is able to run both the vision-based flight control and stereo-vision-based obstacle detection parallelly on an embedded computer onboard the MAV. The system design features the integration of a powerful onboard computer and the synchronization of IMU-Vision measurements by hardware timestamping which allows tight integration of IMU measurements into the computer vision pipeline. We evaluate the accuracy of marker-based visual pose estimation for flight control and demonstrate marker-based autonomous flight including obstacle detection using stereo vision. We also show the benefits of our IMU-Vision synchronization for egomotion estimation in additional experiments where we use the synchronized measurements for pose estimation using the 2pt+gravity formulation of the PnP problem.  相似文献   
6.
Lycopene epsilon-cyclase (LcyE) is a key enzyme in the carotenoid biosynthetic pathway of higher plants. Using the CRSPR/Cas9 and the geminiviral replicon, we optimized a method for targeted mutagenesis and golden SNP replacement of the LcyE gene in rice. We have exploited the geminiviral replicon amplification as a means to provide a large amount of donor template for the repair of a CRISPR-Cas-induced DNA double-strand break (DSB) in the target gene via homology-directed repair (HDR). Mutagenesis experiments performed on the Donggin variety achieved precise modification of the LcyE loci with an efficiency of up to 90%. In HDR experiments, our target was the LcyE allele (LcyE-H523L) derived from anther culture containing a golden SNP replacement. The phenotype of the homologous recombination (HR) mutant obtained through the geminiviral replicon-based template delivery system was tangerine color, and the frequency was 1.32% of the transformed calli. In addition, the total carotenoid content of the LcyEsg2-HDR1 and LcyEsg2-HDR2 lines was 6.8–9.6 times higher than that of the wild-type (WT) calli, respectively. The reactive oxygen species content was lower in the LcyEsg2-HDR1 and LcyEsg2-HDR2 lines. These results indicate that efficient HDR can be achieved in the golden SNP replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits.  相似文献   
7.
The CRISPR/Cas9 site-directed gene-editing system offers great advantages for identifying gene function and crop improvement. The circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness, but operates through largely unknown mechanisms. Here, we generated core circadian clock evening components, Brassica rapa PSEUDO-RESPONSE REGULATOR (BrPRR) 1a, 1b, and 1ab (both 1a and 1b double knockout) mutants, using CRISPR/Cas9 genome editing in Chinese cabbage, where 9–16 genetic edited lines of each mutant were obtained. The targeted deep sequencing showed that each mutant had 2–4 different mutation types at the target sites in the BrPRR1a and BrPRR1b genes. To identify the functions of BrPRR1a and 1b genes, hypocotyl length, and mRNA and protein levels of core circadian clock morning components, BrCCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and BrLHY (LATE ELONGATED HYPOCOTYL) a and b were examined under light/dark cycles and continuous light conditions. The BrPRR1a and 1ab double mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm than wildtype (WT). On the other hand, the BrPRR1b mutant was not significantly different from WT. These results suggested that two paralogous genes may not be associated with the same regulatory function in Chinese cabbage. Taken together, our results demonstrated that CRISPR/Cas9 is an efficient tool for achieving targeted genome modifications and elucidating the biological functions of circadian clock genes in B. rapa, for both breeding and improvement.  相似文献   
8.
This paper reports the synthesis of various molar concentrations of manganese (Mn)-doped Ultra-High Surface area Activated Carbon (USAC) additives and their efficient use as cathode materials for supercapacitors. We synthesized the nanoparticles via a novel and facile dip-coating process and characterized them in detail by various analytical techniques. The SEM, EDAX, and XPS results showed that the Mn ions were successfully substituted on the USAC additives’ layered structure without any structural changes. The long cyclic stability of the as-prepared Mn-doped USAC additives was tested as a cathode material for supercapacitors at different current densities. The detailed experimental results showed that the Mn dopant content crucially determines the electrochemical performances of the USAC additives. Electrochemical measurements showed that the MnCEP-S600HTT with 0.10 mol% molar concentration of Mn dopant gives the best cycling performances. It delivers a discharge capacity of 262.9 mAh g?1 after 100 cycles. Further increasing the current density to 1000 mA g?1 allowed it to still maintain 253.6 mAh g?1 after 200 cycles. We confirmed that the structure of Mn-doped USAC additives is an important pole to improve the structural stability and electrochemical properties.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号