首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82469篇
  免费   9301篇
  国内免费   5391篇
电工技术   5931篇
技术理论   6篇
综合类   7595篇
化学工业   12536篇
金属工艺   4590篇
机械仪表   5154篇
建筑科学   6277篇
矿业工程   2562篇
能源动力   2189篇
轻工业   9546篇
水利工程   2238篇
石油天然气   3343篇
武器工业   872篇
无线电   9545篇
一般工业技术   8297篇
冶金工业   2777篇
原子能技术   977篇
自动化技术   12726篇
  2024年   494篇
  2023年   1655篇
  2022年   3417篇
  2021年   4543篇
  2020年   3539篇
  2019年   2595篇
  2018年   2750篇
  2017年   3094篇
  2016年   2697篇
  2015年   4102篇
  2014年   5176篇
  2013年   5927篇
  2012年   6805篇
  2011年   7202篇
  2010年   6315篇
  2009年   5708篇
  2008年   5598篇
  2007年   5075篇
  2006年   4455篇
  2005年   3493篇
  2004年   2445篇
  2003年   2000篇
  2002年   2015篇
  2001年   1715篇
  2000年   1126篇
  1999年   892篇
  1998年   481篇
  1997年   390篇
  1996年   364篇
  1995年   242篇
  1994年   182篇
  1993年   142篇
  1992年   136篇
  1991年   88篇
  1990年   63篇
  1989年   50篇
  1988年   30篇
  1987年   23篇
  1986年   24篇
  1985年   7篇
  1984年   8篇
  1983年   8篇
  1982年   14篇
  1981年   10篇
  1980年   24篇
  1979年   14篇
  1977年   2篇
  1973年   1篇
  1959年   7篇
  1951年   17篇
排序方式: 共有10000条查询结果,搜索用时 828 毫秒
1.
Mobile Networks and Applications - Inverse kinematics is an important basic theory in walking control of biped robot. This study focuses on the parameter setting using the improved algorithm in...  相似文献   
2.
熊小明  赵静 《电信科学》2022,38(11):163-168
基于电信运营商数字化转型,系统性地提出了数据驱动的云网发展规划体系,以及六大关键数字化能力构建,设计和实现了一种云网规划数字化平台,该平台可用于实现目标网络精细规划、边缘计算精准预测等场景,并探讨了数字孪生在规划领域的应用前景,对运营商推进云网融合战略、推进高质量发展具有指导和参考意义。  相似文献   
3.
目的:解决当前饮料瓶盖检测系统功能单一、体积偏大、颜色识别率低的问题。方法:提出一种基于ARM处理器的小型饮料瓶盖颜色识别系统设计方案,通过仿真软件HyperLynx的LineSim工具设计四层PCB板,设置传输线参数并进行阻抗匹配仿真分析;利用编译软件Jupyter Notebook实现阈值设置、目标轮廓检测、目标框出等功能。结果:在强、弱光条件下,识别系统对红、绿、蓝3种颜色瓶盖的识别率达到92.7%。结论:与傅里叶描述子相比,该识别系统识别准确率和精度更高,同时系统也具有人脸识别功能,适用于各种智能应用场景。  相似文献   
4.
5.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
6.
The development of efficient and stable oxygen evolution reaction (OER) catalysts is an ongoing challenge. In order to solve the problem of low oxygen evolution efficiency of the current OER catalysts, a novel material was synthesized by the incorporation of NiFeCr-LDH and MoS2, and its structural and electrochemical properties were also investigated. The introduction of MoS2 improves the electrochemical performance of NiFeCr-LDH. The polarization curve shows that the potential of composite material is only 1.50 V at a current density of 10 mA cm?2, which is far superior to commercial precious metal catalysts. In addition, the stability experiment shows that the composite material has excellent stability, and the current density has little change after 500 cycles. Furthermore, we found that some metal ions, such as Ni, Cr and Mo, exist in the form of high valence on the surface of NiFeCr-LDH@MoS2, which is also conducive to the occurrence of oxygen evolution reaction.  相似文献   
7.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
8.
The in situ axial X-ray diffraction patterns of four ceramic powder samples (MgO, Al2O3, AlN, and cBN) that were compressed in a diamond anvil cell under uniaxial non-hydrostatic conditions were recorded. The microscopic deviatoric stress as a function of the pressure was determined from the X-ray diffraction peak broadening analysis: the curves increased approximately linearly with the pressure at the initial compression stage and then levelled off under further compression. Pressure-induced transparency was observed in all of the samples under compression, and the pressure at the turning point on the curves of the microscopic deviatoric stress versus pressure corresponded to the pressure at which the samples became transparent. Analysis of the microstructural features of the pressure-induced transparent samples indicated that the compression caused the grains to fracture, and the broken grains bonded with each other. We demonstrated that the ceramics’ pressure-induced transparency was a process during which the grains were squeezed and broken, the pores were close between the grains, and the broken grains were re-bonded under compression.  相似文献   
9.
Developing the thermal stability of metal-based ceramic composites or their films has always been challenging and bottlenecks for the utilization of energy. In this paper, the novel mesh-like functional Al doped-MoO3 nanocomposite film with even distribution and high purity was firstly fabricated by the high-efficiency electrophoretic deposition and surface modification. The optimal suspension turned out to be the mixture of isopropanol and the additives of polyethyleneimine and benzoic acid. The microtopography, crystalline structure, environmental resistance and thermal stability were analyzed by field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray diffractometer (XRD), exposure and droplet-impacting test, DSC analysis and ignition test, respectively. The water contact angle and sliding angle of product can reach ~170° and <1°, indicating the excellent anti-wetting property. In addition, the high heat-release (~3180 J/g) of product all kept almost unchangeable after six months exposure experiments, demonstrating the outstanding thermostability. The exquisite design idea here can perfectly match microelectromechanical system (MEMS), providing the valuable reference for fabricating other metal-based high-energy composites with long lifespan for real industrial applications.  相似文献   
10.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号