首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  国内免费   1篇
化学工业   11篇
建筑科学   1篇
轻工业   4篇
无线电   2篇
一般工业技术   7篇
冶金工业   7篇
原子能技术   3篇
自动化技术   1篇
  2021年   3篇
  2020年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1998年   4篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1985年   2篇
  1980年   1篇
  1974年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
Background The authors partnered with the National Survey of Student Engagement (NSSE) to examine how persistence within the engineering major and engagement of undergraduate students in engineering compare to other majors. Purpose (Hypothesis ) We explored three research questions: How do engineering students rate their college engagement compared to students in other majors? How do engineering persisters, non‐persisters, and migrators compare in terms of collegiate engagement, time on task, and enriching educational experiences? What college engagement factors predict persistence in engineering? Design /Method Data are from nearly 12,000 students who completed the NSSE survey in their first and senior years as undergraduates. Surveys were analyzed using ANOVA and Chi‐square calculations to determine whether differences emerged in three dimensions of student engagement based on students' self‐reported major. Due to the large sample, effect size was used to determine statistical significance. Binary logistic regression was used to identify factors that predict persistence among first year students and seniors in engineering. Results Results show that engineering majors are similar to non‐engineering majors on most variables. However, engineering majors reported significantly higher gains in practical competence and higher order thinking, but the lowest means on reflective learning and gains in general education. Engineering majors reported significantly more time preparing for class and less time participating in educationally enriching experiences. Conclusions We conclude that different educational outcomes between majors are the result of programmatic differences. The packed engineering curriculum requires students to make trade‐offs between gaining practical/marketable skills and participating in educationally enriching activities. We question this trade‐off and suggest alternative approaches.  相似文献   
2.
Photocatalytic oxidation over titanium dioxide is a "green" sustainable process for treatment and purification of water and wastewater. A dimensionless model for steady-state, continuous flow, thin-film, slurry (TFS) photocatalytic reactors for water purification using solar radiation and UV lamps is presented and validated. The model is applicable to TFS flat plate and annular photoreactors of (a) falling film or (b) double-skin designs, operating with three ideal flows: (1) falling film laminar flow (FFLF), (2) plug flow (PF) and (3) slitflow (SF). Model parameters can be estimated easily from real systems, and solutions can be obtained with modest computational efforts. A modified two-flux absorption-scattering model models the radiation field in the photoreactor. Model simulations show that at a scattering albedo higher than 0.3, radiation scattering can significantly affect conversions obtained at different values of optical thickness. However, at lower values, the effect of scattering on conversions is negligible. The conversions with the idealized flow systems follow the sequence FFLF > PF > SF. SF operation should always be avoided. The model estimates the optimum value of optical thickness that maximizes conversion in a photocatalytic reactor. Optimal design of TFS photocatalytic reactors using the photocatalyst TiO2 Degussa P25 requires an optical thickness in the range from 1.8 to 3.4 depending on flow conditions and reaction kinetics.  相似文献   
3.
4.
Neutronic studies of European demonstration fusion power plant (DEMO) have been so far based on plasma physics low confinement mode (L-mode). Future tokamaks, nevertheless, may likely use alternative confinement modes such as high or advanced confinement modes (H&A-mode). Based on analytical formulae used in plasma physics, H&A-modes D-T neutron sources formulae are proposed in this paper. For that purpose, a tokamak random neutron source generator, TRANSGEN, has been built generating bidimensional (radial and poloidal) neutron source maps to be used as input for neutronics Monte-Carlo codes (TRIPOLI-4 and MCNP5). The impact of such a source on the neutronic behavior of the European DEMO-2007 Helium-cooled lithium–lead reactor concept has been assessed and compared with previous results obtained using a L-mode neutron source. An A-mode neutron source map from TRANSGEN has been used with the code TRIPOLI-4. Assuming the same fusion power, results show that main reactor global neutronic parameters, e.g. tritium breeding ratio and neutron multiplication factor, evolved slightly when compared to present uncertainties margin. However, local parameters, such as the neutron wall loading (NWL), change significantly compared to L-mode shape: from ?22% to +11% for NWL.  相似文献   
5.
郑吉妮  周件 《电子技术》2009,36(7):40-42
微型通用串行总线(Micro-USB)作为PC机及各类数码产品的主流接口,因其具有携带方便、传输速度快、易于扩展、总线供电等优点,尤其是其特殊的传输线模型,使其在通用计算机、嵌入式系统为主要应用领域的各种数字系统和设备中得到了广泛的应用,并获得制造商及用户的高度认可,具有广阔的发展前景.  相似文献   
6.
This paper presents a methodology for the evaluation of the intrinsic photocatalytic oxidation (PCO) kinetics of indoor air pollutants. It combines computational fluid dynamics (CFD) modeling of the fluid flow in the reactor with radiation field modeling and photocatalytic reaction kinetics to yield a rigorous model of a flat-plate, single-pass, flow-through photocatalytic reactor for indoor air purification. This method was applied to model the PCO of trichloroethylene (TCE) in humidified air and to derive kinetic parameters directly from kinetic data in an integral flow reactor. Steady-state PCO experiments of TCE over irradiated TiO2 (Degussa P25) thin films immobilized on glass supports were carried out at different radiation intensities, flow rates, and inlet substrate concentrations. The oxidation rate of TCE was found to be first-order on the incident photon flux and to follow a Langmuir-Hinshelwood type reaction kinetics rate law. Mass transfer resistances were observed at Reynolds numbers less than 46. Apparent quantum yields were found to be up to 0.97 mol Einstein(-1). A comparison of the model prediction with the experimental results in an integral reactor yielded pollutant-specific kinetic rate parameters which were independent of reactor geometry, radiation field, and fluid-dynamics. The kinetic parameters would,therefore, be more universally applicable to the design and scale-up of photocatalytic reactors for indoor air purification.  相似文献   
7.
8.
The conceptual design of a new type of fusion reactor based on the helium-cooled lithium-lead (HCLL) blanket has been performed within the European Power Plant Conceptual Studies. As part of this activity, a new attachment system suitable for the HCLL blanket modules had to be developed. This attachment is composed of two parts. The first one is the connection between module and the first part of a shield, called high temperature shield, which operates at a temperature around 500 °C, close to that of the blanket module. This connection must be made at the lateral walls, in order to avoid openings through the first wall and breeding zone thus avoiding complex design and fabrication issues of the module. The second connection is the one between the high temperature shield and a second shield called low temperature shield, which has a temperature during reactor operation around 150 °C. The design of this connection is complex because it must allow the large differential thermal expansion (up to 30 mm) between the two components. Design proposals for both connections are presented, together with the results of finite element mechanical analyses which demonstrate the feasibility to support the blanket and shield modules during normal and accidental operation conditions.  相似文献   
9.
The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) degrade tryptophan (Trp) into kynurenine (Kyn) at the initial step of an enzymatic pathway affecting T cell proliferation. IDO1 is highly expressed in various cancer types and associated with poor prognosis. Nevertheless, the serum Kyn/Trp concentration ratio has been suggested as a marker of cancer-associated immune suppression. We measured Kyn and Trp in blood samples of a wide cohort of non-small-cell lung cancer (NSCLC) patients, before they underwent surgery, and analyzed possible correlations of the Kyn/Trp ratio with either IDO1 expression or clinical–pathological parameters. Low Kyn/Trp significantly correlated with low IDO1 expression and never-smoker patients; while high Kyn/Trp was significantly associated with older (≥68 years) patients, advanced tumor stage, and squamous cell carcinoma (Sqcc), rather than the adenocarcinoma (Adc) histotype. Moreover, high Kyn/Trp was associated, among the Adc group, with higher tumor stages (II and III), and, among the Sqcc group, with a high density of tumor-infiltrating lymphocytes. A trend correlating the high Kyn/Trp ratio with the probability of recurrences from NSCLC was also found. In conclusion, high serum Kyn/Trp ratio, associated with clinical and histopathological parameters, may serve as a serum biomarker to optimize risk stratification and therapy of NSCLC patients.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号