首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   15篇
电工技术   2篇
化学工业   46篇
金属工艺   2篇
机械仪表   2篇
建筑科学   10篇
能源动力   8篇
轻工业   13篇
水利工程   7篇
石油天然气   1篇
无线电   17篇
一般工业技术   34篇
冶金工业   8篇
自动化技术   20篇
  2023年   4篇
  2022年   5篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   1篇
  2017年   6篇
  2016年   7篇
  2015年   13篇
  2014年   7篇
  2013年   9篇
  2012年   4篇
  2011年   10篇
  2010年   9篇
  2009年   8篇
  2008年   8篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1986年   4篇
  1984年   4篇
  1983年   2篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有170条查询结果,搜索用时 0 毫秒
1.
This paper deals with a new boundary element method for analysis of the quasistatic problems in coupled thermoelasticity. Through some mathematical manipulation of the Navier equation in elasticity, the heat conduction equation is transformed into a simpler form, similar to the uncoupled-type equation with the modified thermal conductivity which shows the coupling effects. This procedure enables us to treat the coupled thermoelastic problems as an uncoupled one, A few examples are computed by the proposed BEM, and the results obtained are compared with the analytical ones available in the literature, whereby the accuracy and versatility of the proposed method are demonstrated.  相似文献   
2.
A series of Co/Al2O3 catalysts were prepared by the incipient wetness impregnation method using γ-Al2O3 support and (CH3COO)2Co·4H2O solutions, followed by calcination at 500–800 °C. Characterization of catalysts was accomplished by several techniques such as thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), physisorption of nitrogen, mercury and helium-based pycnometries, Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and pH of zero charge (PZC). Impregnation of support produced a moderate decrease of its surface area and pore volume and also led to minor changes of its PZC. Depending on preparation conditions (i.e., calcination atmosphere and temperature and metal loading), one or more of the following Co-containing compounds were identified: CoO, Co3O4 and CoAl2O4. The support and prepared Co/Al2O3 catalysts were tested to catalyze the ozonation of aqueous pyruvic acid at pH 2.5. Pyruvic acid was shown refractory towards single ozonation but the use of γ-Al2O3 and Co/Al2O3 catalysts resulted in 56–96% pyruvic acid conversion and 41–78% decrease in DOC after 2 h of ozonation of phosphate-buffered solutions. In the absence of the buffer, conversion rate was enhanced likely as a result of pH increase during the course of the process thus giving rise to the indirect way of ozonation through hydroxyl radicals. Acetic acid was found as the main by-product of pyruvic acid ozonation. Depending on the catalyst used, yield of acetic acid varied from 32 to 49%, values noticeably lower that that obtained from the control non-catalytic ozonation experiment (73%). Differences in catalytic activity amongst the various Co/Al2O3 catalysts investigated were attributed to the different Co active phases deposited on the γ-Al2O3 surface. The following sequence of increasing activity can be inferred from experimental results: CoO, CoAl2O4 and Co3O4. All the Co/Al2O3 catalysts prepared showed good stability as the percentage of cobalt leached out was rather low.  相似文献   
3.
The adsorption behavior of cadmium, copper and lead ions on holocellulosic materials containing various levels of polyacrylonitrile and poly(acrylic acid) grafts was examined. The amount of metal ions adsorbed per gram of the modified cellulosic substrate depended on the metal ion type, the nature and level of the incorporated graft polymer. In all cases grafting increased the metal ion-binding capacity of the cellulosic materials (by up to 50% for Cu (II) ions). The influence of temperature and initial metal ions concentration on the sorption behavior of the metal ions on the composite materials was investigated.  相似文献   
4.
Water quality modelling facilitates our better understanding of the processes taking place in a lake system, and conservation plans to address them. The water quality analysis simulation programme (WASP) was used in this study to predict daily variations in water quality parameters, namely dissolved oxygen, nitrate, phosphate and chlorophyll‐a and biochemical oxygen demand concentrations in a tropical lake system. The lake was divided into eight segments with the respective morphological, environmental and flow details being model inputs. The monthly concentration of each water quality parameter also comprised model input. The model output was daily spatiotemporal variation in these parameters over a period of 476 days. This study also indicated that the occurrence of precipitation plays a major role in defining the water quality of a tropical lake. The heavy precipitation after a long gap, especially during the summer season, results in a large quantity of organic matter entering the lake through drains, thereby increasing the organic matter and phosphate in the water body, and subsequently resulting in high chlorophyll‐a concentrations in the lake. A reduced chlorophyll‐a concentration was observed during the heavy rains. The water quality fluctuations are more pronounced with precipitation, especially where polluted drains enter the lake. An improved water quality can be observed downstream, including increased dissolved oxygen and nitrate concentrations. Improved water quality was observed during the postmonsoon period, with increased salinity and dissolved oxygen concentrations, a finding that confirms generalized and specific conclusions can be achieved with the use of the WASP model.  相似文献   
5.
In three-dimensional medical imaging, segmentation of specific anatomy structure is often a preprocessing step for computer-aided detection/diagnosis (CAD) purposes, and its performance has a significant impact on diagnosis of diseases as well as objective quantitative assessment of therapeutic efficacy. However, the existence of various diseases, image noise or artifacts, and individual anatomical variety generally impose a challenge for accurate segmentation of specific structures. To address these problems, a shape analysis strategy termed "break-and-repair" is presented in this study to facilitate automated medical image segmentation. Similar to surface approximation using a limited number of control points, the basic idea is to remove problematic regions and then estimate a smooth and complete surface shape by representing the remaining regions with high fidelity as an implicit function. The innovation of this shape analysis strategy is the capability of solving challenging medical image segmentation problems in a unified framework, regardless of the variability of anatomical structures in question. In our implementation, principal curvature analysis is used to identify and remove the problematic regions and radial basis function (RBF) based implicit surface fitting is used to achieve a closed (or complete) surface boundary. The feasibility and performance of this strategy are demonstrated by applying it to automated segmentation of two completely different anatomical structures depicted on CT examinations, namely human lungs and pulmonary nodules. Our quantitative experiments on a large number of clinical CT examinations collected from different sources demonstrate the accuracy, robustness, and generality of the shape "break-and-repair" strategy in medical image segmentation.  相似文献   
6.
7.
The transition from traditional energy sources to renewable has gained popularity and acceptance in recent years. This has been driven mainly by the current level of pollution, global warming, decommission of old nuclear power plants and the increasing cost of conventional energy sources. Nevertheless, one of the many steps to overcome is the seasonality or intermittency of renewable energy sources such as wind power. In recent years, new technologies have come up to address this problem, so the energy can be stored for future purposes. This paper analyses these energy storage alternatives for a specific case in the Columbia River Gorge for wind power. A hierarchical decision model is developed with criteria including political, social, environmental, technical and economical. The main conclusions highlight that the economical and technical criteria are among the most important ones for decision-makers.  相似文献   
8.
Nanocomposites of natural rubber (NR) and pristine clay (clay) were prepared by latex mixing, then crosslinked with phenolic resin (PhOH). For comparative study, the PhOH‐crosslinked neat NR was also prepared. Influence of clay loading (i.e., 1, 3, 5, and 10 phr) on mechanical properties and structural change of PhOH‐crosslinked NR/clay nanocomposites was studied through X‐ray diffraction (XRD), transmission electron microscopic (TEM), wide‐angle X‐ray diffraction (WAXD), tensile property measurement, and Fourier transform infrared spectroscopy (FTIR). XRD and TEM showed that the clay was partly intercalated and aggregated, and that the dispersion state of clay was non‐uniform at higher clay loading (>5 phr). From tensile test measurement, it was found that the pronounced upturn of tensile stress was observed when the clay loading was increased and a maximum tensile strength of the PhOH‐crosslinked NR/clay nanocomposites was obtained at 5 phr clay. WAXD observations showed that an increased addition of clay induced more orientation and alignment of NR chains, thereby lowering onset strain of strain‐induced crystallization and promoting crystallinity of the NR matrix during tensile deformation. FTIR investigation indicated a strong interfacial adhesion between NR matrix and clay filler through a phenolic resin bridge. This suggested that the PhOH did not only act as curative agent for crosslinking of NR, but it also worked as coupling agent for promoting interfacial reaction between NR and clay. The presence of strong interfacial adhesion was found to play an important role in the crystallization process, leading to promotion of mechanical properties of the PhOH‐crosslinked NR/clay nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43214.  相似文献   
9.
Background. Local anesthetics (LAs) have potent anti-inflammatory properties. Inflammatory down-regulation is crucial in diseases with overactive immune reactions, such as acute respiratory distress syndrome (ARDS) and chronic inflammation. We investigated the influence of four LAs, procaine, lidocaine, mepivacaine, and bupivacaine, on the reduction of tumor necrosis factor-alpha (TNF-α) secretion in lipopolysaccharide (LPS)-activated human leucocytes. Methods. Blood samples of 28 individuals were stimulated with LPS. The reduction of TNF-α production by each of the four LAs added (0.5 mg/mL) was measured and correlated with biometric variables. A response was defined as reduction to <85% of initial levels. Results. All four LAs down-regulated the TNF-α secretion in 44–61%: Bupivacaine (44.4%), lidocaine (61.5%), mepivacaine (44.4%), and procaine (50% of the individuals, “responders”). The TNF-α secretion was reduced to 67.4, 68.0, 63.6, and 67.1% of the initial values in responders. The effects in both patients and healthy persons were the same. Interindividual responses to LAs were not correlated with the duration or type of complaints, basal TNF-α serum level, sex, BMI, or age of responders. Conclusions. Four clinically relevant LAs (amid-LA and ester-LA) attenuate the inflammatory response provoked by LPS. They are potential candidates for drug repositioning in treating overactive immune reactions and chronic inflammation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号