首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学工业   1篇
一般工业技术   2篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Silver (Ag) complexes of drugs and their nanosystems have great potential as antibacterials. Recently, an Ag complex of furosemide (Ag–FSE) has shown to be a promising antimicrobial. However, poor solubility of Ag–FSE could hamper its introduction into clinics. Therefore, the authors developed a nanosuspension of Ag–FSE (Ag–FSE_NS) for its solubility and antibacterial activity enhancement. The aim of this study was to introduce a novel nanoantibiotic with enhanced antibacterial efficacy. Ag–FSE_NS was prepared by precipitation–ultrasonication technique. Size, polydispersity index (PI) and zeta potential (ZP) of prepared Ag–FSE_NS were measured by dynamic light scattering, whereas surface morphology was determined using scanning electron microscopy (SEM). In vitro antibacterial activity was evaluated against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa using broth microdilution method. Size, PI and ZP of optimised Ag–FSE_NS1 were 191.2 ± 19.34 nm, 0.465 ± 0.059 and −55.7 ± 8.18 mV, respectively. SEM revealed that Ag–FSE_NS1 particles were rod or needle‐like with smooth surfaces. Saturation solubility of Ag–FSE in NS increased eight‐fold than pure Ag–FSE. Ag–FSE_NS1 exhibited two‐fold and eight‐fold enhancements in activity against E. coli and S. aureus, respectively. The results obtained showed that developed Ag–FSE_NS1 holds a promise as a topical antibacterial.Inspec keywords: nanomedicine, nanofabrication, light scattering, surface morphology, silver, particle size, solubility, suspensions, scanning electron microscopy, electrokinetic effects, drugs, biomedical materials, antibacterial activity, microorganisms, nanoparticles, drug delivery systems, transmission electron microscopyOther keywords: saturation solubility, topical antibacterial, size 171.86 nm to 210.54 nm, voltage ‐47.52 mV to ‐63.88 mV, Ag, broth microdilution method, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, SEM, scanning electron microscopy, surface morphology, dynamic light scattering, particle size, polydispersity index, precipitation–ultrasonication technique, nanoantibiotic, nanosuspension, furosemide, nanosystems, drugs, Ag–FSE_NS preparation, in vitro antibacterial activity, pure Ag–FSE, Ag–FSE_NS1 particles, optimised Ag–FSE_NS1, zeta potential, enhanced antibacterial efficacy, antibacterials  相似文献   
2.
Background: Monoclonal antibodies (mAbs) against cancer biomarkers are key reagents in diagnosis and therapy. One such relevant biomarker is a preferentially expressed antigen in melanoma (PRAME) that is selectively expressed in many tumors. Knowing mAb’s epitope is of utmost importance for understanding the potential activity and therapeutic prospective of the reagents. Methods: We generated a mAb against PRAME immunizing mice with PRAME fragment 161–415; the affinity of the antibody for the protein was evaluated by ELISA and SPR, and its ability to detect the protein in cells was probed by cytofluorimetry and Western blotting experiments. The antibody epitope was identified immobilizing the mAb on bio-layer interferometry (BLI) sensor chip, capturing protein fragments obtained following trypsin digestion and performing mass spectrometry analyses. Results: A mAb against PRAME with an affinity of 35 pM was obtained and characterized. Its epitope on PRAME was localized on residues 202–212, taking advantage of the low volumes and lack of fluidics underlying the BLI settings. Conclusions: The new anti-PRAME mAb recognizes the folded protein on the surface of cell membranes suggesting that the antibody’s epitope is well exposed. BLI sensor chips can be used to identify antibody epitopes.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号