首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   3篇
化学工业   9篇
一般工业技术   1篇
  2023年   1篇
  2020年   2篇
  2018年   1篇
  2015年   2篇
  2013年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
We have examined the stabilization of higher-order noncanonical G-quadruplex (G4) DNA structures formed by the G-rich sequences in the promoter region of oncogenes such as c-MYC, c-KIT, VEGF and BCl2 by newly synthesized, novel nitrogen-containing aromatics conjugated to xanthone moiety. Compounds with N-heterocyclic substituents such as pyridine (XNiso), benzimidazole (XBIm), quinoxaline (XQX) and fluorophore dansyl (XDan) showed greater effectiveness in stabilizing the G4 DNA as well as selective cytotoxicity for cancer cells (mainly A549) over normal cells both in terms of UV-Vis spectral titrations and cytotoxicity assay. Both fluorescence spectral titrimetric measurements and circular dichroism (CD) melting experiments further substantiated the G4 stabilization phenomenon by these small-molecular ligands. In addition, these compounds could induce the formation of parallel G4 structures in the absence of any added salt condition in Tris ⋅ HCl buffer at 25 °C. In a polymerase stop assay, the formation of stable G4 structures in the promoter of oncogenes and halting of DNA synthesis in the presence of the above-mentioned compounds was demonstrated by using oncogene promoter as the DNA synthesis template. Apoptosis-mediated cell death of the cancer cells was proved by Annexin V-PI dual staining assay and cell-cycle arrest occurred in the S phase of the cell cycles. The plausible mode of binding involves the stacking of the xanthone core on the G4 DNA plane with the possibility of interaction with the 5’-overhang as indicated by molecular dynamics simulation studies.  相似文献   
2.
Novel porous bionanocomposites based on halloysite nanotubes as nanofillers and plasticized starch as polymeric matrix were successfully prepared by melt‐extrusion. Foaming was obtained by adding water as natural blowing agent, and by increasing the die temperature. Both the expansion ratio and the porosity increase with increasing die temperature. Addition of high water content allows reducing the foaming temperature. Moreover, the introduction of halloysite has double benefits: these fillers act both as a nucleating agent increasing the porosity and as a barrier agent increasing the proportion of small cells. Foams based on plasticized starch with a blend of glycerol and sorbitol loaded with 6 wt % of halloysite, extruded at 117°C, present the cellular structure and the mechanical properties required for scaffold applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41341.  相似文献   
3.
Water‐blown bio‐based thermoplastic polyurethane (TPU) formulations were developed to fulfill the requirements of the reactive rotational molding/foaming process. They were prepared using synthetic and bio‐based chain extenders. Foams were prepared by stirring polyether polyol (macrodiol), chain extender (diol), surfactant (silicone oil), chemical blowing agent (distilled water), catalyst, and diisocyanate. The concentration of chain extender, blowing agent, and surfactant were varied and their effects on foaming kinetics, physical, mechanical, and morphological properties of foams were investigated. Density, compressive strength, and modulus of foams decrease with increasing blowing agent concentration and increase with increasing chain extender concentration, but are not significantly affected by changes in surfactant concentration. The foam glass‐transition temperatures increase with increasing blowing agent and chain extender concentrations. The foam cell size slightly increases with increasing blowing agent content and decreases upon surfactant addition (without any dependence on concentration), whereas chain extender concentration has no effect on cell size. Bio‐based 1,3‐propanediol can be used successfully for the preparation TPU foams without sacrificing any properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
4.
The influence of addition of polyaniline functionalized multiwalled carbon nanotubes (PANI-MWNTs) on the positive temperature coefficient (PTC) characteristics of carbon black (CB) filled high-density polyethylene (HDPE) nanocomposite materials have been studied. Polymer nanocomposites were prepared by the combined solution and melt-mixing process. The experimental results showed that the PTC intensity and maximum resistivity of the hybrid nanocomposites were obviously influenced by the polyaniline functionalization of multiwalled carbon nanotubes (MWNTs). A noticeable PTC of resistivity was observed for PANI-MWNTs/CB/HDPE hybrid nanocomposites near the melting point of HDPE. This is due to the significant volume expansion near the melting point of the HDPE in presence of hybrid fillers and a sudden increase of the resistivity due to the disconnection of the conductive paths. The PTC effect of CB/HDPE composites can be effectively modified by the addition of PANI-MWNTs.  相似文献   
5.
Bio‐based polyamide 11 and natural halloysite nanotubes (HNTs) were used for the preparation of PA‐11/HNT nanocomposites with varying nanotubes concentrations by melt extrusion using a masterbatch dilution process. The prepared nanocomposites were analyzed for microstructural changes, transparency, thermal stability, rheological behavior, dielectric, and mechanical properties. The HNT nanotubes are well dispersed in PA‐11 matrix in the studied composition range as shown by microscopy and spectrophotometry. Interestingly, good halloysite dispersion in PA‐11 matrix increases the tensile strength and Young modulus of PA‐11 without sacrificing the ductility. Highly dispersed nanotubes also bring favorable changes in the thermal stability, dielectric, and rheological characteristics of PA‐11. Additionally, glass transition temperature, crystallization temperature, and degree of crystallinity of the nanocomposites tend to increase with increase in nanotubes loading. Thus, PA‐11 can become a tailor‐made material with multifunctional characteristics, thanks to the addition of HNTs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
6.
The melt compatibility between poly(L-lactide) (PLA) and polyamides (PAs) with related thermomechanical properties is addressed. A particular attention is paid to four commercial PAs with extrusion processing temperatures close to PLA (PA10-10 to PA12). PLA/PA blend morphologies without a compatibilizer are first revealed by scanning electron microscopy. PA12 displays the best droplet dispersion into PLA (Dn 700 nm), whereas a poor interfacial adhesion is attested for PLA/PA10-10 blends. Interfacial tensions corroborate the PLA/PA10-10 incompatibility (γ12 9 mN/m, 240 °C) with decreasing γ12 in the order PLA/PA10-10 > PLA/PA11 > PLA/PA12 (γ12 2 mN/m). Surface tensions confirm the highest compatibility between PLA and PA12. Ductilities, toughnesses, and thermal resistances of PLA/PA blends are evaluated up to 40-wt % PA. Brittle-to-ductile transitions are observed for PA content higher than 30-wt % with the highest ductility for PLA/PA12, in accordance with their enhanced compatibility. Impact strengths display similar trends with a twofold increase for PLA/PA12. An outstanding synergy between PLA and PA is highlighted by dynamic mechanical analyses with heat deflection up to 130 °C for PLA/PA blends. The synergy arises from a peculiar crystallization of PLA in the presence of PA. PLA/PA morphologies/interfaces can be consequently tuned by an appropriate PA choice with interesting improvements of thermomechanical properties for high-performance/durable applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48440.  相似文献   
7.
Ecological concern on accumulation of neutraceutical industrial waste material and the demands for newer composite materials have promoted extensive research on utilizing industrial wastes materials. Therefore, in the present study finely powdered ginger spent (GS), filled polyurethane (PU) green composites with varying amount viz., 0, 2.5, 5, 7.5, and 10 wt % of GS have been fabricated. The prepared PU/GS green composites have been characterized for their mechanical properties, density and void content. Interaction between filler and matrix has been confirmed from Fourier transform infrared spectroscopy studies. Moisture absorption and desorption studies have been performed at different relative humidity (RH). The moisture absorption and desorption studies, shows that as the hydrophilic GS content increases in the matrix the RH also increases. Water uptake behavior of PU/GS were measured in different chemical environments such as 5% sodium chloride solution, cold water at different temperature and in hydrochloric acid solution. The water uptake values increases as increase in GS concentration. Equilibrium water content, diffusivity and equilibrium time taken for all PU/GS composites have been investigated. Biodegradation studies reveals that as the GS content increases the weight loss also increases. Thermal properties have been performed using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). From DSC and DMA thermograms it is revealed that increase in Tg with increase in GS content. RH and contact angle measurement have been performed to understand the hydrophilic nature of the prepared composite. The morphological behavior of composites has been studied using scanning electron microscopy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41614.  相似文献   
8.
Compatible and partly-biobased poly(l -lactide) (PLA)/polyamide-12 (PA12) blends (30 wt% PA12) are here processed by twin-screw extrusion at high shear without added compatibilizers and the effect of several processing parameters (screw speed, feed rate) on final properties (tensile strength, ductility, impact toughness, thermal resistance) is addressed. High tensile strengths could be maintained for these blends with a maximal ductility (225%) and impact toughness (48 kJ/m2) achieved for an optimal screw speed of 800 rpm. However, extreme screw speeds higher than 800 rpm dramatically reduce ductility and impact toughness. Concerning thermal resistance, a constant increase of the heat deflection temperature is observed with the screw speed and thermal resistance up to 123°C could be obtained. In this respect, processing conditions of PLA/PA12 blends have profound positive effects on all (thermo)mechanical properties. Blend morphologies were revealed by scanning electron microscopy and refined PA12 fibrils are detected at optimal processing conditions. Properties deterioration were correlated to a PA12 fibrillar-to-ellipsoidal shape transition at extreme screw speeds arising from PLA degradation and attesting for the importance of the PA12 fibrillation process on final properties. Consequently, PLA/PA12 blends represent interesting biobased candidates for high-performance applications and their optimization could be easily performed by playing with extrusion conditions without compatibilizers.  相似文献   
9.
This paper presents an evaluation of the effects of titanium dioxide nanoparticles in sulfonated poly(ether ether ketone) (SPEEK) with a sulfonation degree of 57%. A series of inorganic/organic hybrid membranes was prepared with a systematic variation of titanium dioxide nanoparticle content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increasing the inorganic oxide content leads to a decrease of methanol permeability. In terms of morphology, the membranes are homogeneous and exhibit good adhesion between inorganic domains and the polymer matrix. The proton conductivity and fuel cell performances of the nanocomposite membranes showed very good prospective in direct methanol fuel cell usages. The properties of the composite membranes are compared with those of standard Nafion membranes. Copyright © 2006 Society of Chemical Industry  相似文献   
10.
This article focuses on the preparation of isolated soy protein plasticized by a glycerol and water mixture/poly[(butylene succinate)‐co‐adipate] blends by an original single step extrusion process. Prepared blends were injection‐molded and characterized for their molecular interaction, morphology, rheological, thermal, dynamic mechanical, and mechanical properties. The comparison of these results with those obtained using a more regular two‐step compounding process validates the technical efficiency of this cost‐effective one‐step approach. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46442.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号