首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
化学工业   7篇
金属工艺   3篇
能源动力   1篇
轻工业   1篇
无线电   3篇
一般工业技术   7篇
冶金工业   3篇
自动化技术   3篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   3篇
  2013年   1篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
The effect of single-layer pyrocarbon (PyC) and multilayered (PyC/SiC)n=4 interphases on the flexural strength of un-coated and SiC seal-coated stitched 2D carbon fiber reinforced silicon carbide (Cf/SiC) composites was investigated. The composites were prepared by I-CVI process. Flexural strength of the composites was measured at 1200 °C in air atmosphere. It was observed that irrespective of the type of interphase, the seal coated samples showed a higher value of flexural strength as compared to the uncoated samples. The flexural strength of 470 ± 12 MPa was observed for the seal coated Cf/SiC composite samples with multilayered interphase. The seal coated samples with single layer PyC interphase showed flexural strength of 370 ± 20 MPa. The fractured surfaces of tested samples were analyzed in detail to study the fracture phenomena. Based on microstructure-property relations, a mechanism has been proposed for the increase of flexural properties of Cf/SiC composites having multilayered interphase.  相似文献   
2.
For preparing calcium ferrite, calcium tris (dmaleato) ferrate(III) precursor was prepared by mixing aqueous solutions of iron(III) maleate, calcium maleate and maleic acid. Various physico-chemical techniques i.e. TG, DTG, DTA, Mössbauer, XRD, IR etc have been used to study the decomposition behaviour from ambient to 900°C and ferrite formation. Three consecutive decomposition steps leading to the formation of α-Fe2O3 and calcium carbonate have been observed at various stages of thermolysis. In the final stage the ferrite, bdCa2Fe2O5, is obtained as a result of solid state reaction between α-Fe2O3 and calcium carbonate at 788°C, a temperature much lower than for ceramic method. The results have been compared with those of the oxalate precursor.  相似文献   
3.
Carbon-fiber reinforced (SiC + ZrC) mini-composites have been prepared via soft-solution process using inorganic precursors. In this process, water-soluble compounds have been used to act as precursor materials to impregnate the fiber tow. Thermal analysis provided the temperature range for the pyrolysis to convert the precursors into the desired (SiC + ZrC) matrix. X-ray diffraction of the composites confirmed the phase formation and the crystallite size of these phases were in the range of 25–40 nm. Cross-sectional microstructures of the composites have shown the matrix formation around each individual fiber. The mechanical properties revealed that the tensile strength and fracture energy of the composites pyrolyzed at 1600 °C were significantly higher with typical composite failure behavior, as compared to those pyrolyzed at 1700 °C. The statistical size effects of the tensile strength were investigated on the basis of the Weibull statistics.  相似文献   
4.
This research focuses on studying the effects of heat and mass transfer convective flow passing through an infinite vertical plate embedded in porous media under radiation and chemical reaction with constant heat and mass flux. A magnetic field of strength is functional throughout the fluid region. The novelty of the present work is to examine the heat and mass transfer magnetohydrodynamics flow in the presence of thermal radiation. The equations governing the flow, heat and mass transfer are solved analytically using the perturbation technique. Expressions for velocity, temperature, concentration, skin-friction, Nusselt, and Sherwood numbers are obtained. The influence of physical parameters on the flow domain is described graphically and in tabular form. It is found that increase in radiation parameter reduces the velocity and temperature. Moreover, internal friction of the plate decreased with increasing values of radiation parameter.  相似文献   
5.
In developing titanium-based materials for high-performance structural applications, the focus has been on discontinuously reinforced titanium-matrix composites that are based on the in-situ creation of TiB whiskers. This article presents the elevated-temperature compressive flow properties of Ti-TiBw composites as a function of temperature (from 973 K to 1,273 K), strain rate (from 10−5 to 10−3s−1), and the TiB whisker content (commercially pure titanium and composites with 30 to 86 vol.% TiBw). In both the commercially pure titanium and the TiB-whisker-containing titanium composites, flow stress increases with increasing strain rate and decreasing test temperature. In this study, flow stress increased with increasing volume fraction of TiB at a given temperature and strain rate. The composite containing 86% TiBw showed significantly higher elevated-temperature strength when compared to the other composites. The composites exhibit systematic trends in the variation of work-hardening behavior (in terms of work-hardening exponent, n, and work-hardening rate, dσ/dɛ) and the strain-rate dependence. For more information, contact N. Eswara Prasad, Defence Metallurgical Research Laboratory, P.O. Kanchanbagh, Hyderabad 500058, India; e-mail nep@dmrl.ernet.in or neswarap@rediffmail.com.  相似文献   
6.
Microstructures of 76Mo–14Si–10B, 77Mo–12Si–8B–3Al, and 73.4Mo–11.2Si–8.1B–7.3Al alloys, processed by reaction hot pressing of elemental powder mixtures, have shown -Mo, Mo3Si, and Mo5SiB2 phases. In addition, particles of SiO2 formed from the oxygen content of raw materials could be seen in the 76Mo–14Si–10B alloy, while -Al2O3 formed in the alloys containing Al. Parts of the Al have been found within the solid solutions of -Mo and Mo3Si. The average fracture toughness determined from indentation crack lengths and three-point bend testing of single edge notch bend specimens lies in the range of 5.0–8.7 MPa√m, with alloys containing Al demonstrating higher values. Analyses of load-displacement plots, fracture profiles and indentation crack paths have shown evidence of R-curve type behaviour and operating toughening mechanisms involving crack bridging by -Mo, crack deflection and branching. Flexural strength is related to volume fraction of the -Mo and Al content. Compression tests on the 76Mo–14Si–10B alloy between 1100 °C and 1350 °C have shown excellent strength retention, and evidence of thermally activated plastic flow.  相似文献   
7.
A ZnO nanocrystal–graphene composite was synthesized by a two-step method involving mechanical milling and sonication-assisted exfoliation. Zn metal powder was first ball-milled with graphite powder for 30 h in water medium. This ball-milled mixture was then subjected to exfoliation by sonication in the presence of sodium lauryl sulfate surfactant to produce graphene decorated with spherical agglomerates of ultrafine nanocrystalline ZnO. The presence of a few layers of graphene was confirmed by Raman spectroscopy and atomic force microscopy measurements. The size, phase identity and composition of the ZnO nanocrystals was determined by transmission electron microscopy measurements.  相似文献   
8.
Fracture behaviour of zinc sulphide ceramics prepared by chemical vapour deposition (CVD) followed by hot isostatic pressing (CVD + HIP) was investigated in terms of flexural strength (σf), plane-strain fracture toughness (KIc), even conditional fracture toughness (KIQ), R-curve behaviour (variation of total fracture energy release rate, Jc with crack extension, δ/δc) and fracture mode. The corresponding Knoop Hardness number (KHN) and its correlations to flexural strength (σf) are also evaluated and reported. The present study showed that the zinc sulphide (ZnS) ceramics processed by CVD exhibited higher fracture resistance compared to ZnS processed by CVD + HIP condition. This observation is principally attributed to higher grain size associated with post-CVD HIPing process. In both conditions, the ZnS materials exhibited conditional fracture toughness (KIQ) that decreased moderately with increased crack length due to the change in fracture mode form grossly tensile to predominant shear. A constantly rising R-curve behaviour was indicated in both the materials with significant increase in total fracture energy release rate (Jc with the normalised displacement (δ/δc), a parameter representing crack extension.  相似文献   
9.
The elevated-temperature deformation behavior of polycrystalline molybdenum disilicide (MoSi2), in the range of 1000 °C to 1350 °C at the strain rates of 10−3, 5×10−4, or 10−4 s−1, has been studied. The yield strength, post-yield flow behavior comprising strain hardening and serrations, as well as some of the deformation microstructures of reaction-hot-pressed (RHP) MoSi2 samples, processed by hot pressing an elemental Mo + Si powder mixture and having a grain size of 5 μm and oxygen content of 0.06 wt pct, have been compared with those of samples prepared by hot pressing of commercial-grade Starck MoSi2 powder, with a grain size of 27 μm and oxygen content of 0.89 wt pct. While the fine-grained RHP MoSi2 samples have shown higher yield strength at relatively lower temperatures and higher strain rates, the coarse-grained Starck MoSi2 has a higher yield at decreasing strain rates and higher temperatures. The work-hardening or softening characteristics are dependent on grain size, temperature, and strain rate. Enhanced dislocation activity and dynamic recovery, accomplished by arrangement of dislocations in low-angle boundaries, characterize the deformation behavior of fine-grained RHP MoSi2 at a temperature of 1200 °C and above and are responsible for increased uniform plastic strain with increasing temperature. The silica content appears to be less effective in degrading the high-temperature yield strength if the grain size is coarse, but leads to plastic-flow localization and strain softening in Starck MoSi2. Serrated plastic flow has also been observed in a large number of samples, mostly when deformed at specific combinations of strain rates and temperatures.  相似文献   
10.
Monotonic tensile properties and fracture behaviour of carbon fibre filament materials, namely single/mono- and multi-filaments (two and four filaments) as well as virgin carbon tows have been evaluated and discussed. Micro composite or single fibre approach is used in this study, which facilitated the evaluation of tensile properties and nature of fracture of carbon filament materials in a relatively short time with a large number of inexpensive trials. Tensile tests have been conducted on these filament materials at ambient temperature and laboratory air atmosphere. Load–elongation and the corresponding stress–strain plots thus obtained have been analysed to understand the tensile behaviour. The peak tensile strength of single carbon filament is found to be 3.8 GPa, and the value of the resilience obtained is 19 MJ/m3. The peak tensile strength was found to increase moderately with further increase in number of filaments. However, the value of resilience was found to increase with increase in the number of fibres, which is attributed to the controlled failure of multi-filaments. On the other hand, the tensile strength of virgin carbon tow without matrix was found to be 1.13 GPa, and the value of the fracture energy was determined to be 9.9 MJ/m3, which is nearly one fourth or even less than the corresponding values of the mono- and multi-filaments. The data obtained in the case of the virgin carbon tows were further analysed to evaluate the Weibull statistical parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号