首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   11篇
  国内免费   2篇
电工技术   1篇
化学工业   32篇
金属工艺   8篇
机械仪表   5篇
建筑科学   5篇
能源动力   15篇
轻工业   21篇
水利工程   4篇
无线电   41篇
一般工业技术   56篇
冶金工业   17篇
自动化技术   50篇
  2024年   1篇
  2023年   5篇
  2022年   13篇
  2021年   10篇
  2020年   20篇
  2019年   17篇
  2018年   15篇
  2017年   18篇
  2016年   9篇
  2015年   5篇
  2014年   17篇
  2013年   20篇
  2012年   16篇
  2011年   15篇
  2010年   9篇
  2009年   6篇
  2008年   4篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1980年   2篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
1.
Al-SBA-15 of varying Si/Al ratios in the range 11.4–78.4 was synthesized using tri-block copolymer P123. The calcined materials were examined by XRD, pore size distribution, surface area, 27Al NMR spectroscopy. The acidity and acid strength distribution were studied using microcalorimetric adsorption of NH3. The acidic properties were also examined by cumene cracking reaction as a function of Si/Al ratios. Systematic variation of acidity and activity was observed as a function of Si/Al ratio. The initial heats of NH3 adsorption correlated well with activity indicate that acid sites with ΔH > 100 kJ/mole is responsible for cumene cracking activity. Linear correlations were obtained with total acidity and cumene cracking activities. The tetrahedral aluminum was found to be responsible for the observed acidities and catalytic activities.  相似文献   
2.
We study entanglement dynamics of qubit–qutrit pair under Dzyaloshinskii–Moriya (DM) interaction. The qubit–qutrit pair acts as a closed system and one external qubit serve as the environment for the pair. The external qubit interact with qubit of closed system via DM interaction. This interaction frequently kills the entanglement between qubit–qutrit pair, which is also periodically recovered. On the other hand two parameter class of state of qubit–qutrit pair also affected by DM interaction and one parameter class of state remains unaffected. The frequency of occurrence of entanglement sudden death and entanglement sudden birth in two parameter class of state is half than qubit–qutrit pure state. We used our quantification of entanglement as negativity measure.  相似文献   
3.
4.
Intrusion detection faces a number of challenges; an intrusion detection system must reliably detect malicious activities in a network and must perform efficiently to cope with the large amount of network traffic. In this paper, we address these two issues of Accuracy and Efficiency using Conditional Random Fields and Layered Approach. We demonstrate that high attack detection accuracy can be achieved by using Conditional Random Fields and high efficiency by implementing the Layered Approach. Experimental results on the benchmark KDD '99 intrusion data set show that our proposed system based on Layered Conditional Random Fields outperforms other well-known methods such as the decision trees and the naive Bayes. The improvement in attack detection accuracy is very high, particularly, for the U2R attacks (34.8 percent improvement) and the R2L attacks (34.5 percent improvement). Statistical Tests also demonstrate higher confidence in detection accuracy for our method. Finally, we show that our system is robust and is able to handle noisy data without compromising performance.  相似文献   
5.
Stem cell enrichment plays a critical role in both research and clinical applications. The typical method for stem cell enrichment may use invasive processes and takes a long period of time. Spiral-shaped microfluidic devices, which combine lift and Dean drag forces to direct cells of different sizes into separate trajectories, can be used to noninvasively process samples at a rate of milliliters per minute. This paper presents a simple 2-loop spiral-shaped inertial microfluidic devices with the aid of sheath flow to enrich neural stem cells (NSCs), derived from induced pluripotent stem cells. NSCs and spontaneously differentiated non-neural cells were mixed and flowed through the spiral-shaped devices. Samples collected at the outlets were analyzed for purity and recovery. It was found that the device focused the NSCs into a narrow trajectory, which could then be collected in two out of the eight outlets. The device was tested at different flow rates and found that the most highly enriched fractions (2.1×) with NSCs recovery 93% were achieved at the flow rate (3 ml/min). Next, we extended our investigation from 2-loop design to 10-loop design to eliminate the use of sheath flow. NSCs were enriched to 2.5×, but only 38% of the NSCs were recovered from the most enriched fractions. Spiral-shaped microfluidic devices are capable of rapid, label-free enrichment of target stem cells, and have great potential in point-of-care tissue preparation.  相似文献   
6.
Slag entrapment from metal–slag interface during continuous casting operations has been a major area of concern for steelmakers globally. The presence of inactive regions in the upper region of the mold poses another challenge. Proper flow behavior of the molten metal coming out of the nozzle in the mold is required to overcome these challenges. Nozzle design greatly affects the flow pattern of the molten steel inside the mold. The present investigation is an attempt to study the flow and solidification behavior in a slab caster mold with the use of a novel-designed hexa-furcated nozzle using numerical investigation results. The casting speed and submerged entry nozzle (SEN) depth are varied to study the effect of these parameters on minimizing the inactive zones in the mold and the steel/slag interface fluctuations. The results show that the interface fluctuation increases at higher casting speed and lower SEN depth. The residence time distribution (RTD) analysis was also performed for different cases to investigate the flow behavior. The validation of the fluid flow and RTD curve inside the computational domain is carried out with the use of physical modeling.  相似文献   
7.
An α‐l ‐rhamnosidase secreted by Penicillium citrinum MTCC‐8897 has been purified to homogeneity from the culture filtrate of the fungal strain using ammonium sulphate precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The sodium dodecyl sulphate/polyacrylamide gel electrophoresis analysis of the purified enzyme gave a single protein band corresponding to the molecular mass 51.0 kDa. The native polyacrylamide gel electrophoresis also gave a single protein band confirming the enzyme purity. The Km and Vmax values of the enzyme for p‐nitrophenyl α‐l ‐rhamnopyranoside were 0.36 mm and 22.54 μmole min?1 mg?1, respectively, and kcat value was 17.1 s?1 giving kcat/Km value of 4.75 × 104 m ?1 s?1. The pH and temperature optima of the enzyme were 7.0 and 60 °C, respectively. The purified enzyme liberated l ‐rhamnose from naringin, rutin, hesperidin and wine, indicating that it has biotechnological application potential for the preparation of l ‐rhamnose and other pharmaceutically important compounds from natural glycosides containing terminal α‐l ‐rhamnose and also in the enhancement of wine aroma.  相似文献   
8.
9.
The objective of the present work is to get insights into the mechanistic origin of the reinforcement effects of nanoclay on a segmented polybutadiene polyurethane-urea system. To this end, a convergent analysis of the hard domain morphology and conformational state of soft segment in the nanocomposites was carried out by using a combination of complementary characterization techniques, namely, Fourier transform infrared spectroscopy, small angle neutron scattering, transmission electron microscopy, modulated differential scanning calorimetry and dynamic mechanical analysis. Analysis of small angle neutron scattering data by a combination of Percus–Yevick hard sphere and Zernike-Ornstein model coupled with direct visualization of the dispersed hard domain morphology from transmission electron microscopy provided insight on clay induced changes in the hard domain morphology. A monotonic decrease in the domain size as well as the average interdomain distance was observed with increasing nanoclay content in the polymer matrix. Analysis of the carbonyl stretching region from FTIR showed increased degree of hydrogen bonding for the urethane carbonyl groups of the nanocomposites compared to the neat matrix. A combination of calorimetric and dynamic mechanical analysis revealed the existence of a constrained amorphous region; quantified to be 16% at the highest clay content experimented. The manifestation of these morphological and conformational changes on the nano-, micro- and macro scale reinforcements in the nanocomposites was investigated by mechanical properties at these length scales using nanoindentation, DMA and tensile testing, respectively.  相似文献   
10.
Two-dimensional transistors are promising candidates for the next generation of nanoscale devices. Like the other alternatives, they also encounter problems such as instability under standard condition (STP), low channel mobility, small band gaps, and difficulty to integrate metal contacts. The latter poses a great challenge since metal/semiconductor interface significantly affects the transistor‘s performance. Some of these obstacles can be solved by using two-dimensional transition metal di-chalcogenides (TMDC) materials. In this study, we performed charge transport calculation based on density functional theory (DFT) followed by wave dynamics to evaluate the performance of six two-dimensional TMDC metal/semiconductor/metal systems. Each semiconductor monolayer was laterally connected, at both ends to metal contacts consisting of VS2 or FeS2 monolayers. We found that charge transport was more efficient in systems containing a CrS2 semiconductor monolayer compared to systems with MoS2 or WS2 as the semiconductor monolayer. The electronic characterization of the monolayer TMDC materials by DFT estimates well the trend in charge transport efficiency calculated using wave packet dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号