首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   625篇
  免费   57篇
  国内免费   4篇
电工技术   11篇
综合类   1篇
化学工业   133篇
金属工艺   12篇
机械仪表   20篇
建筑科学   22篇
能源动力   41篇
轻工业   48篇
水利工程   2篇
无线电   78篇
一般工业技术   190篇
冶金工业   22篇
原子能技术   4篇
自动化技术   102篇
  2024年   7篇
  2023年   33篇
  2022年   26篇
  2021年   41篇
  2020年   44篇
  2019年   31篇
  2018年   33篇
  2017年   43篇
  2016年   32篇
  2015年   17篇
  2014年   39篇
  2013年   61篇
  2012年   35篇
  2011年   52篇
  2010年   21篇
  2009年   34篇
  2008年   28篇
  2007年   25篇
  2006年   11篇
  2005年   17篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   4篇
  1987年   2篇
  1986年   1篇
  1980年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有686条查询结果,搜索用时 31 毫秒
1.

For a supercapacitor electrode, carbon-based materials have received great attention for their high surface area and stability. In this work, sustainable and cost-effective synthesis of boron-doped activated biomass-derived carbon from the stems of Prosopis juliflora has been reported for supercapacitor applications. The activation by KOH creates pores and boron induces p-type doping in the carbon matrix. The material gave a higher specific capacitance of 307.14 F/g at a current density of 0.5 A/g. The symmetric supercapacitor device delivered 156.29 F/g of specific capacitance with 98.1% of energy efficiency. The observed energy and power densities were 7.81 Wh/Kg and 150 W/Kg, respectively. The device was further studied with stability test for 1000 charge/discharge cycles and showed 98.6% of capacitance retention and 97.9% of coulombic efficiency.

  相似文献   
2.
3.
Synthesis of WC–Co nanocomposites generally involves gas-phase carburization. A novel approach in which a polymer precursor such as polyacrylonitrile serves as an in situ carbon source has been developed. The WC–Co nanocomposites formed are characterized by X-ray powder diffraction and electron microscopy. Nearly phase pure WC–Co nanocomposites with a particle size of 50–80 nm have been obtained. The phase purity of the products is strongly influenced by the synthesis and processing conditions such as the firing temperature, time, and atmosphere.  相似文献   
4.

Water and microbial contamination is a serious issues to aquatic system and human health. The metal selenide has a tremendous technique to degrade the dyes and bacteria.The present work reports the synthesis of ZnSe nanoparticles in a simple co-precipitation method. The synthesized samples were analyzed by structural, optical, morphological, catalytic and biological activity. The size and bandgap by annealing temperature tuning which are confirm by X-ray Diffraction and UV–Visible spectrometer. The quasi-spherical shapes were confirmed by Scanning Electron Microscope and Transmission Electron Microscope.The photo excited electrons have trapped the metals and promoting the degradation system. The release of ions to the surface was acknowledged by Photo Luminescence spectroscopy. The photocatalytic dye degradation of the Methyl Orange showed that the enhanced activity in high temperature. The photocatalytic dye degradation activity suggested that the temperature change the production of free radicals and ROS formation. The hydroxyl radicals were slewing the dye molecules and bacteria. The obtained results giving the information of ZnSe nanoparticles are one of the fascinating research areas in the current research world. Because of its large application in different field it acts as a promoting catalytic and biological application.

Graphical Abstract
  相似文献   
5.
Multimedia Tools and Applications - Detection and clustering of commercial advertisements plays an important role in multimedia indexing also in the creation of personalized user content. In...  相似文献   
6.
Classical and quantum world views differ in peculiar ways. Understanding decisive quantum features—for which no classical explanation exist—and their interrelations is of foundational interest. Moreover, recognizing non-classical features carries practical significance in information processing tasks as it offers insights as to why quantum protocols work better than their classical counterparts. We focus here on two celebrated notions of non-classicality viz., negativity of P phase–space representation and entanglement in symmetric multiqubit systems. We prove that they imply each other.  相似文献   
7.
Inorganic/organic composite polymer electrolytes (CPEs) with good flexibility and electrode contact have been pursued for solid−state sodium-metal batteries. However, the application of CPEs for high energy density solid−state sodium-metal batteries is still limited by the low Na+ conductivity, large thickness, and low ion transference number. Herein, an ultra-thin single-particle-layer (UTSPL) composite polymer electrolyte membrane with a thickness of ≈20 µm straddled by a sodium beta−alumina ceramic electrolyte (SBACE) is presented. A ceramic Na+-ion electrolyte that bridges or percolates across an ultra-thin and flexible polymer membrane provides: 1) the strength and flexibility from the polymer membrane, 2) excellent electrolyte/electrode interfacial contact, and 3) a percolation path for Na+-ion transfer. Owing to this novel design, the obtained UTSPL-35SBACE membrane exhibits a high Na+-ion conductivity of 0.19 mS cm−1 and a transference number of 0.91 at room temperature, contributing to long−term cycling stability of symmetric sodium cells with a small overpotential. The assembled quasi-solid-state cell with the as−prepared UTSPL-35SBACE membrane displays superior cycling performance with a discharge capacity of 105 mAh g−1 at 0.5 °C rate after 100 cycles and excellent rate performance (82 mAh g−1 at 5 °C rate) at room temperature with the potassium manganese hexacyanoferrate (KMHCF)@CNTs/CNFs cathode, where KMHCF refers to potassium manganese hexacyanoferrate.  相似文献   
8.
In today's Internet routing infrastructure, designers have addressed scaling concerns in routing constrained multiobjective optimization problems examining latency and mobility concerns as a secondary constrain. In tactical Mobile Ad-hoc Network (MANET), hubs can function based on the work plan in various social affairs and the internally connected hubs are almost having the related moving standards where the topology between one and the other are tightly coupled in steady support by considering the touchstone of hubs such as a self-sorted out, self-mending and self-administration. Clustering in the routing process is one of the key aspects to increase MANET performance by coordinating the pathways using multiple criteria and analytics. We present a Group Adaptive Hybrid Routing Algorithm (GAHRA) for gathering portability, which pursues table-driven directing methodology in stable accumulations and on-request steering strategy for versatile situations. Based on this aspect, the research demonstrates an adjustable framework for commuting between the table-driven approach and the on-request approach, with the objectives of enhancing the output of MANET routing computation in each hub. Simulation analysis and replication results reveal that the proposed method is promising than a single well-known existing routing approach and is well-suited for sensitive MANET applications.  相似文献   
9.
The Journal of Supercomputing - Data transmission is a great challenge in any network environment. However, medical data collected from IoT devices need to be transmitted at high speed to ensure...  相似文献   
10.
In today’s world, Cloud Computing (CC) enables the users to access computing resources and services over cloud without any need to own the infrastructure. Cloud Computing is a concept in which a network of devices, located in remote locations, is integrated to perform operations like data collection, processing, data profiling and data storage. In this context, resource allocation and task scheduling are important processes which must be managed based on the requirements of a user. In order to allocate the resources effectively, hybrid cloud is employed since it is a capable solution to process large-scale consumer applications in a pay-by-use manner. Hence, the model is to be designed as a profit-driven framework to reduce cost and make span. With this motivation, the current research work develops a Cost-Effective Optimal Task Scheduling Model (CEOTS). A novel algorithm called Target-based Cost Derivation (TCD) model is used in the proposed work for hybrid clouds. Moreover, the algorithm works on the basis of multi-intentional task completion process with optimal resource allocation. The model was successfully simulated to validate its effectiveness based on factors such as processing time, make span and efficient utilization of virtual machines. The results infer that the proposed model outperformed the existing works and can be relied in future for real-time applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号