首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
无线电   3篇
一般工业技术   4篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
In this work, the controlled fabrication of highly ordered ZnO nanowire (NW) arrays on silicon substrates is reported. Si NWs fabricated by a combination of phase shift lithography and etching are used as a template and are subsequently substituted by ZnO NWs with a dry-etching technique and atomic layer deposition. This fabrication technique allows the vertical ZnO NWs to be fabricated on 4 in Si wafers. Room temperature photoluminescence and micro-photoluminescence are used to observe the optical properties of the atomic layer deposition (ALD) based ZnO NWs. The sharp UV luminescence observed from the ALD ZnO NWs is unexpected for the polycrystalline nanostructure. Surprisingly, the defect related luminescence is much decreased compared to an ALD ZnO film deposited at the same time ona plane substrate. Electrical characterization was carried out by using nanomanipulators. With the p-type Si substrate and the n-type ZnO NWs the nanodevices represent p–n NW diodes.The nanowire diodes show a very high breakthrough potential which implies that the ALD ZnO NWs can be used for future electronic applications.  相似文献   
2.
A new technique is reported for the transformation of smooth nonpolar ZnO nanowire surfaces to zigzagged high‐index polar surfaces using polycrystalline ZnO thin films deposited by atomic layer deposition (ALD). The c‐axis‐oriented ZnO nanowires with smooth nonpolar surfaces are fabricated using vapor deposition method and subsequently coated by ALD with a ZnO particulate thin film. The synthesized ZnO–ZnO core–shell nanostructures are annealed at 800 °C to transform the smooth ZnO nanowires to zigzagged nanowires with high‐index polar surfaces. Ozone sensing response is compared for all three types of fabricated nanowire morphologies, namely nanowires with smooth surfaces, ZnO–ZnO core–shell nanowires, and zigzagged ZnO nanowires to determine the role of crystallographic surface planes on gas response. While the smooth and core–shell nanowires are largely non‐responsive to varying O3 concentrations in the experiments, zigzagged nanowires show a significantly higher sensitivity (ppb level) owing to inherent defect‐rich high‐index polar surfaces.  相似文献   
3.
One-step device fabrication through the integration of nanowires (NWs) into silicon microchips is still under intensive scientific study as it has proved difficult to obtain a reliable and controllable fabrication technique. So far, the techniques are either costly or suffer from small throughput. Recently, a cost-effective method based on thin-film fracture that can be used as a template for NW fabrication was suggested. Here, a way to integrate NWs between microcontacts is demonstrated. Different geometries of microstructured photoresist formed by using standard photolithography are analyzed. Surprisingly, a very simple "stripe" geometry is found to yield highly reproducible fracture patterns, which are convenient templates for fault-tolerant NW fabrication. Microchips containing integrated Au, Pd, Ni, and Ti NWs and their suitability for studies of conductivity and oxidation behavior are reported, and their suitability as a hydrogen sensor is investigated. Details of the fabrication process are also discussed.  相似文献   
4.
5.
Semiconductor nanowire devices have several properties which match future requirements of scaling down the size of electronics. In typical microelectronics production, a number of microstructures are aligned precisely on top of each other during the fabrication process. In the case of nanowires, this mandatory condition is still hard to achieve. A technological breakthrough is needed to accurately place nanowires at any specific position and then form devices in mass production. In this article, an upscalable process combining conventional micromachining with phase shift lithography will be demonstrated as a suitable tool for nanowire device technology. Vertical Si and ZnO nanowires are demonstrated on very large (several cm(2)) areas. We demonstrate how the nanowire positions can be controlled, and the resulting nanowires are used for device fabrication. As an example Si/ZnO heterojunction diode arrays are fabricated. The electrical characterization of the produced devices has also been performed to confirm the functionality of the fabricated diodes.  相似文献   
6.
A simple fabrication of ZnO‐nanowire‐based device and their implementation as a pH sensor, temperature sensor, and photo detector is reported. The presented multifunctional ZnO multiple‐nanowire sensor platform contains a Au finger structure, which is realized by conventional photolithography on a SiO2 substrate. The nanowires are grown using thermal chemical vapor deposition. In order to detect the physical signals, changes in electrical signals were measured (conductance and current). For temperature sensing, the current behavior from 90 to 380 K under vacuum conditions exhibit a tunneling behavior between spaced nanowires. For photo sensing, the current response between the “on” and “off” states of light was measured when exposed to different wavelengths ranging from UV to visible light. Finally, for pH sensing the conductance was measured between a pH of 5 and 8.5. The ZnO nanowires were protected from chemical attacks by a thin layer of C4F8‐plasma‐based coating.  相似文献   
7.
Defining the position of an object on a planar substrate by force sensors is a common technology nowadays. Many products are commercialized worldwide, which make use of force sensors, especially, for instance, touchpads. Here advanced lithography processes together with piezoelectric materials are demonstrated to fabricate an extremely high resolution force sensor. The approach combines a large array of nanoscale piezoelectric lines fabricated on Si wafer by phase‐shift lithography and atomic‐layer‐deposition‐based spacer lithography techniques. These key lithography methods are utilized to fabricate ultralong (cm range) nanolines on the wafer scale. ZnO and P(VDF‐TrFE) are selected here as materials for piezoelectric signal generators. The detection mechanisms are explained and simulations combined with experimental data are demonstrated to prove the concept. The signal generated when an object approaches one single line is in the nanoampere range. The result enables a new and simple path for a device fabrication, which defines the position with micro‐ and nanometer resolution and can be used, for example, as micro‐ and nanoparticle trackers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号