首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2377篇
  免费   103篇
  国内免费   3篇
电工技术   22篇
综合类   4篇
化学工业   324篇
金属工艺   50篇
机械仪表   85篇
建筑科学   32篇
能源动力   50篇
轻工业   107篇
水利工程   4篇
石油天然气   3篇
无线电   260篇
一般工业技术   321篇
冶金工业   1041篇
原子能技术   20篇
自动化技术   160篇
  2023年   15篇
  2022年   19篇
  2021年   33篇
  2020年   43篇
  2019年   30篇
  2018年   59篇
  2017年   53篇
  2016年   52篇
  2015年   36篇
  2014年   58篇
  2013年   89篇
  2012年   110篇
  2011年   128篇
  2010年   93篇
  2009年   83篇
  2008年   84篇
  2007年   75篇
  2006年   53篇
  2005年   49篇
  2004年   36篇
  2003年   47篇
  2002年   39篇
  2001年   32篇
  2000年   34篇
  1999年   49篇
  1998年   319篇
  1997年   155篇
  1996年   116篇
  1995年   81篇
  1994年   68篇
  1993年   67篇
  1992年   20篇
  1991年   25篇
  1990年   21篇
  1989年   27篇
  1988年   24篇
  1987年   23篇
  1986年   21篇
  1985年   11篇
  1984年   3篇
  1983年   4篇
  1982年   8篇
  1981年   8篇
  1980年   8篇
  1977年   17篇
  1976年   48篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1959年   1篇
排序方式: 共有2483条查询结果,搜索用时 15 毫秒
1.
Journal of Mechanical Science and Technology - This study delivers equations useful for low-height pleated fibrous filter design: two pressure drop equations and one set of optimum design equations...  相似文献   
2.
International Journal of Control, Automation and Systems - In this paper, a regulation problem for a class of lower triangular nonlinear systems under unknown measurement sensitivity by output...  相似文献   
3.
Level set method [S. Osher, J. Sethian, J. Comput. Phys. 79 (1988) 12] is a highly robust and accurate computational technique for tracking moving interfaces in various application domains. It originates from the idea to view the moving front as a particular level set of a higher dimensional function, so the topological merging and breaking, sharp gradients and cusps can form naturally, and the effects of curvature can be easily incorporated. The resulting equations, describing interface surface evolution, are of Hamilton-Jacobi type and they are solved using techniques developed for hyperbolic equations. In this paper we describe an extension of the sparse field method for solving level set equations in the case of non-convex Hamiltonians, which are common in the simulations of the profile surface evolution during plasma etching and deposition processes. Sparse field method itself, developed by Whitaker [R. Whitaker, Internat. J. Comput. Vision 29 (3) (1998) 203] and broadly used in image processing community, is an alternative to the usual combination of narrow band and fast marching procedures for the computationally effective solving of level set equations. The developed procedure is applied to the simulations of 3D feature profile surface evolution during plasma etching process, that include the effects of ion enhanced chemical etching and physical sputtering, which are the primary causes of the Hamiltonian non-convexity.  相似文献   
4.
The effect of a thin RuOx layer formed on the Ru/TiN/doped poly-Si/Si stack structure was compared with that on the RuOx/TiN/doped poly-Si/Si stack structure over the post-deposition annealing temperature ranges of 450–600°C. The Ru/TiN/poly-Si/Si contact system exhibited linear behavior at forward bias with a small increase in the total resistance up to 600°C. The RuOx/TiN/poly-Si/Si contact system exhibited nonlinear characteristics under forward bias at 450°C, which is attributed to no formation of a thin RuOx layer at the RuOx surface and porous-amorphous microstructure. In the former case, the addition of oxygen at the surface layer of the Ru film by pre-annealing leads to the formation of a thin RuOx layer and chemically strong Ru-O bonds. This results from the retardation of oxygen diffusion caused by the discontinuity of diffusion paths. In particular, the RuOx layer in a nonstoichiometric state is changed to the RuO2-crystalline phase in a stoichiometric state after post-deposition annealing; this phase can act as an oxygen-capture layer. Therefore, it appears that the electrical properties of the Ru/TiN/poly-Si/Si contact system are better than those of the RuOx/TiN/poly-Si/Si contact system.  相似文献   
5.
Understanding the mechanism for sucrose-induced protein stabilization is important in many diverse fields, ranging from biochemistry and environmental physiology to pharmaceutical science. Timasheff and Lee [Lee, J. C. & Timasheff, S. N. (1981) J. Biol. Chem. 256, 7193-7201] have established that thermodynamic stabilization of proteins by sucrose is due to preferential exclusion of the sugar from the protein's surface, which increases protein chemical potential. The current study measures the preferential exclusion of 1 M sucrose from a protein drug, recombinant interleukin 1 receptor antagonist (rhIL-1ra). It is proposed that the degree of preferential exclusion and increase in chemical potential are directly proportional to the protein surface area and that, hence, the system will favor the protein state with the smallest surface area. This mechanism explains the observed sucrose-induced restriction of rhIL-1ra conformational fluctuations, which were studied by hydrogen-deuterium exchange and cysteine reactivity measurements. Furthermore, infrared spectroscopy of rhlL-1ra suggested that a more ordered native conformation is induced by sucrose. Electron paramagnetic resonance spectroscopy demonstrated that in the presence of sucrose, spin-labeled cysteine 116 becomes more buried in the protein's interior and that the hydrodynamic diameter of the protein is reduced. The preferential exclusion of sucrose from the protein and the resulting shift in the equilibrium between protein states toward the most compact conformation account for sucrose-induced effects on rhIL-1ra.  相似文献   
6.
7.
PURPOSE: The activity of Al3+, Ga3+, and Be2+ ions in the presence of NaF to directly activate G-proteins was investigated by their potentiative effect on forskolin (FSK)-activated adenylyl cyclase in rabbit ciliary process membranes and their effects on aqueous humor dynamics in vivo. METHODS: Adenylyl cyclase (AC) was determined by radiometric conversion of ATP to cAMP by the particulate fraction of rabbit ciliary processes. Intravitreal injections of sterile solutions of analytical grade salts were made into the center of the vitreous in a volume of 20 microliters. Intraocular pressure, aqueous humor flow, and uveoscleral outflow measurements were made by pneumatonometry, fluorophotometry, and fluorescein-dextran method, respectively. Outflow facility was determined by tonography in the intact eyes and by two-level constant pressure perfusion in cannulated eyes. RESULTS: Both Al3+ (EC50, 40 mumol/l) and Be2+ (EC50, 11 mumol/l) in the presence of 0.5-2 mM NaF activated the stimulatory G-protein Gs. Ga3+ was ineffective and did not antagonize the activation by Al3+. Intravitreal injections of Al3+ (1 mumol/eye) or Be2+ (0.5 or 1 mumol/eye) had no significant intraocular pressure (IOP) effect, nor did 1.5 or 3 mumol/eye of NaF, but when either cation was injected together with NaF, IOP decreased by up to 40% for up to 140 hr. At the time of maximum IOP effect (72 hr) aqueous humor flow determined by fluorophotometry was decreased in BeCl2+ NaF-treated eyes by 40% relative to BeCl2-treated eyes; however, tonographic facility of outflow was unaffected. Uveoscleral flow was also decreased by 38% in BeCl2+ NaF treated eyes. CONCLUSIONS: These findings support the hypothesis that Gs activation of ciliary process adenylyl cyclase decreases aqueous humor formation rate in rabbit eyes, and that activation of G-proteins mediates contraction of ciliary muscles causing a decrease of aqueous humor outflow via the uveoscleral route. The results suggest that G-proteins putatively involved in trabecular facility changes are less sensitive to activation by BeF3- than are other parameters of aqueous humor dynamics.  相似文献   
8.
9.
10.
Anomalous threshold voltage roll-up behavior, commonly referred as reverse short channel effect (RSCE), has been observed in high-k (HfO2 on SiON buffer, Al2O3 on SiON buffer) gated submicron nMOSFETs, while the SiO2 or SiON control samples show normal short channel effect (SCE) behavior. The possible causes such as inhomogeneous channel doping profile and gate oxide thickness variation near S/D ends have been ruled out. The results indicate that interface trap density that dependents on channel length is the main cause of the RSCE observed here. In addition, oxide charge also plays a role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号