首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   6篇
化学工业   9篇
建筑科学   9篇
能源动力   1篇
轻工业   2篇
无线电   4篇
一般工业技术   11篇
冶金工业   1篇
自动化技术   4篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  1999年   1篇
  1991年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
We present a novel method for detecting malaria parasites and determining the stage of infection from digital images comprising red blood cells (RBCs). The proposed method is robust under varying conditions of image luminance, contrast and clumping of RBCs. Both strong and weak boundary edges of the RBCs and parasites are detected based on the similarity measure between local image neighborhoods and predefined edge filters. A rule-based algorithm is applied to link edge fragments to form closed contours of the RBCs and parasite regions, as well as to split clumps into constituent cells. A radial basis support vector machine determines the stage of infection from features extracted from each parasite region. The proposed method achieves 97% accuracy in cell segmentation and 86% accuracy in parasite detection when tested on a total of 530 digitally captured images of three species of malaria parasites: Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei.  相似文献   
2.
3.
In this present study, the compression ignition engine was designed to run on CIME (Calophyllum inophyllum methyl ester) biodiesel with nanoparticles. The TiO2 nanoparticle is added to the biodiesel in the form of nanofluid at concentration levels of 100?ppm whereas ethanox is added at levels of 100, 200 and 500?ppm. The nanoparticle and the ethanox are dispersed by the ultrasonication process. The addition of nanofluid reduces the particulate emission like nitrogen oxide (NOx) at 100% load. The efficiency is better and emission is reduced owing to the influence of explosion of water molecules present in the biodiesel. We found ethanox to be a superlative nanofluid to reduce the emission of toxic gas at appreciable levels. We have witnessed a 20% reduction in emission of NOx and 10% reduction of other particulate emission. In addition, the exit geometry of exhaust is modified from a circular shape to an elliptical one and the consequence of the geometry is calculated.  相似文献   
4.
Triclosan (TCS), an antimicrobial agent, is an emerging and persistent environmental pollutant that is often found as a contaminant in surface waters and sediments; hence, knowledge of its degradability is important. In this study we investigated laccase-mediated TCS transformation and detoxification, using laccase (from the fungus Ganoderma lucidum) in the presence and absence of redox mediators. Transformation products were identified using HPLC, ESI-MS and GC-MS, and transformation mechanisms were proposed. In the absence of redox mediator, 56.5% TCS removal was observed within 24 h, concomitant with formation of new products with molecular weights greater than that of TCS. These products were dimers and trimers of TCS, as confirmed by ESI-MS analysis. Among the various mediators tested, 1-hydroxybenzotriazole (HBT) and syringaldehyde (SYD) significantly enhanced TCS transformation (∼90%). The presence of these mediators resulted in products with lower molecular weights than TCS, including 2,4-dichlorophenol (2,4-DCP; confirmed by GC-MS) and dechlorinated forms of 2,4-DCP. When SYD was used as the mediator, dechlorination resulted in 2-chlorohydroquinone (2-CHQ). Bacterial growth inhibition studies revealed that laccase-mediated transformation of TCS effectively decreased its toxicity, with ultimate conversion to less toxic or nontoxic products. Our results confirmed the involvement of two mechanisms of laccase-catalyzed TCS removal: (i) oligomerization in the absence of redox mediators, and (ii) ether bond cleavage followed by dechlorination in the presence of redox mediators. These results suggest that laccase in combination with natural redox mediator systems may be a useful strategy for the detoxification and elimination of TCS from aqueous systems.  相似文献   
5.
Results are presented on the oxidative–combustion reactions of H2, CO, methane and propane over polycrystalline-powdered silica-supported catalysts containing Pt (and possibly oxide promoters, e.g. MnO2, etc.) and the coupling of different combustion processes and also heterogeneous–homogeneous reactions. The Pt/silica catalysts appear to mature with use. Catalysed combustions take place, as expected, at far lower temperatures and with smaller activation energies than the homogeneous reactions. The role of added or intermediate (i.e. produced by alkane partial oxidation or steam reforming) H2 in accelerating and lowering the temperatures of catalysed alkane combustions and hence minimising NOx emission is considered with regard to the dispersion of the Pt, as is bifurcative–hysteretic combustion in the catalysed reaction, prevalent for CO, but less certain for H2 or alkanes. CO decelerates the catalysed combustion of hydrogen on supported Pt (and may also do this for alkane combustion). Whether the acceleration due to intermediate H2 in alkane combustion exceeds the deceleration due to intermediate CO remains to be seen, but it may be that the water–gas shift reaction moves the advantage to H2. Further study by in situ methods will be needed to optimise and understand this coupling so that it can be used to maximise efficient alkane-catalysed combustion with minimum NOx production. This should also lead to higher turnover numbers (which are at present quite low for propane-catalysed combustion).  相似文献   
6.
The performance of all‐polymer solar cells (all‐PSCs) is often limited by the poor exciton dissociation process. Here, the design of a series of polymer donors ( P1 – P3 ) with different numbers of fluorine atoms on their backbone is presented and the influence of fluorination on charge generation in all‐PSCs is investigated. Sequential fluorination of the polymer backbones increases the dipole moment difference between the ground and excited states (Δµge) from P1 (18.40 D) to P2 (25.11 D) and to P3 (28.47 D). The large Δµge of P3 leads to efficient exciton dissociation with greatly suppressed charge recombination in P3 ‐based all‐PSCs. Additionally, the fluorination lowers the highest occupied molecular orbital energy level of P3 and P2 , leading to higher open‐circuit voltage (VOC). The power conversion efficiency of the P3 ‐based all‐PSCs (6.42%) outperforms those of the P2 and P1 (5.00% and 2.65%)‐based devices. The reduced charge recombination and the enhanced polymer exciton lifetime in P3 ‐based all‐PSCs are confirmed by the measurements of light‐intensity dependent short‐circuit current density (JSC) and VOC, and time‐resolved photoluminescence. The results provide reciprocal understanding of the charge generation process associated with Δµge in all‐PSCs and suggest an effective strategy for designing π‐conjugated polymers for high performance all‐PSCs.  相似文献   
7.
An OOK transmitter in 433-MHz ISM band employing a speed-up circuit is described. The proposed speed-up circuit accelerates the start-up of the oscillator and buffer by briefly increasing the bias currents during transmission of bit “1”. This leads to a data rate increase from 3 to 10-Mb/s without any penalty on power consumption. The data rate can also be made adaptable by varying the duration in which the bias current is increased. The proposed OOK transmitter is implemented in 0.35-μm CMOS technology. The measured results show that the transmitter achieves a maximum data rate of 10-Mb/s with a dc power consumption of 518 μW from a 1-V power supply, yielding an energy efficiency of 52 pJ/bit or 0.97 nJ/bit/mW when normalized to the output power. This paper also derives a closed form equation which describes the transient behavior of Colpitts oscillator during start up.  相似文献   
8.
In this study, we prepared glucose and glucosamine-grafted polyacrylamide (PAM)/graphite composites as adsorbents and characterized by Fourier transform infrared (FT-IR), SEM/EDAX, XRD and TGA analysis. Direct blue 2b dye removal by composites was investigated using kinetic, equilibrium and thermodynamic studies by varying adsorption parameters. The results manifest that glucosamine-grafted PAM/graphite composite was an efficient adsorbent for the expulsion of dye from aqueous medium. The Freundlich isotherm fits well with the equilibrium data. The pseudo second-order model was suitable for describing the kinetic data and equilibrium attained within 60 min. Thermodynamic analysis reveals that adsorption of dye is physical, spontaneous and endothermic in nature. The recyclability study reveals that the regeneration efficiency of GA-g-PAM/graphite was maintained 85.35% up to eight cycles.  相似文献   
9.
10.
Network control and management techniques (e.g., dynamic path switching and on-demand bandwidth provisioning) rely on active measurements of the end-to-end network status. The measurements are needed to meet network monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. Recent widespread deployment of openly accessible multi-domain active measurement frameworks, such as perfSONAR, has resulted in users competing for system and network measurement resources. Hence, there is a need to prioritize measurement requests of users before they are scheduled on measurement resources. In this paper, we present a novel ontology-based semantic priority scheduling algorithm (SPS) that handles resource contention while servicing measurement requests for meeting network monitoring objectives. We adopt ontologies to formalize semantic definitions and develop an inference engine to dynamically prioritize measurement requests. The prioritization is based upon user roles, user sampling preferences, resource policies, and oversampling mitigation factors. Performance evaluation results demonstrate that our SPS algorithm outperforms existing deterministic and heuristic algorithms in terms of user ‘satisfaction ratio’ and ‘average stretch’ among serviced measurement requests. Further, by sampling experiments on real-network perfSONAR measurement data sets, we show that our SPS algorithm successfully mitigates oversampling and further improves the satisfaction ratio. Our SPS scheme and evaluation results are vital to manage large-scale measurement infrastructures used for meeting monitoring objectives in the next-generation applications and networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号