首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   11篇
电工技术   4篇
化学工业   35篇
金属工艺   8篇
机械仪表   5篇
建筑科学   5篇
能源动力   2篇
轻工业   5篇
无线电   8篇
一般工业技术   25篇
冶金工业   14篇
自动化技术   7篇
  2023年   4篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   2篇
  2018年   6篇
  2017年   1篇
  2016年   11篇
  2015年   1篇
  2014年   7篇
  2013年   7篇
  2012年   3篇
  2011年   10篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
排序方式: 共有118条查询结果,搜索用时 31 毫秒
1.
Highly accurate real‐time localization is of fundamental importance for the safety and efficiency of planetary rovers exploring the surface of Mars. Mars rover operations rely on vision‐based systems to avoid hazards as well as plan safe routes. However, vision‐based systems operate on the assumption that sufficient visual texture is visible in the scene. This poses a challenge for vision‐based navigation on Mars where regions lacking visual texture are prevalent. To overcome this, we make use of the ability of the rover to actively steer the visual sensor to improve fault tolerance and maximize the perception performance. This paper answers the question of where and when to look by presenting a method for predicting the sensor trajectory that maximizes the localization performance of the rover. This is accomplished by an online assessment of possible trajectories using synthetic, future camera views created from previous observations of the scene. The proposed trajectories are quantified and chosen based on the expected localization performance. In this study, we validate the proposed method in field experiments at the Jet Propulsion Laboratory (JPL) Mars Yard. Furthermore, multiple performance metrics are identified and evaluated for reducing the overall runtime of the algorithm. We show how actively steering the perception system increases the localization accuracy compared with traditional fixed‐sensor configurations.  相似文献   
2.
A novel Ca2+/calmodulin-dependent protein kinase II (CaM Kinase II) inhibitor, KN-93 potently inhibits gastric acid secretion from parietal cells. As previously reported (1), treatment of parietal cells with a selective inhibitor of CaM kinase II, KN-62 resulted in the inhibition of cholinergic-stimulated rabbit parietal cell secretion, whereas it failed to inhibit the histamine and forskolin response. In contrast effects of carbachol, histamine and forskolin were significantly inhibited by KN-93 with an IC50 of 0.15, 0.3 and 1 microM, respectively; these effects occurred without any changes in intracellular cyclic AMP and Ca2+ levels. In the present study we investigated the mechanism by which KN-93 acts upon the acid-secreting machinery of gastric parietal cells. Neither redistribution of the proton pump activity nor the morphological transformation were affected by KN-93. The drug only weakly inhibited the H+, K(+)-ATPase activity but strongly dissipated the proton gradient formed in the gastric membrane vesicles and reduced the volume of luminal space. Thus KN-93 acts at pH gradient formation whereas KN-62 acts only at CaM Kinase II.  相似文献   
3.
4.
An organic microcavity laser, in which all the stacked polymer layers are doped with pyrromethene-567 dye, is presented. Singlemode laser oscillation at 568 nm was obtained that was located in the middle of the stopband. The lasing threshold was found to be 260 nJ/pulse, which corresponded to 300 muJ/cm2 in the pulse energy density  相似文献   
5.
The effect of the arc voltage on various factors of design and control was investigated for high currents in order to develop design guidelines for circuit breakers. In this study, the dependence on such factors, namely, the current, arc length, electrode surface area, and internal pressure of the arc voltage, was evaluated quantitatively. As a result of the evaluations, it was estimated that the arc voltage near the electrode surface rises linearly with the arc current and the power ?0.8 of the surface area, and that the voltage in the arc column rises as the 0.3 power of the pressure increase. We confirmed the validity of the estimated voltage characteristics by comparison with the generated voltage in an actual arc‐extinction chamber. The characteristics of the estimated voltage can provide effective guidelines for the design of arc extinguishing chambers. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 186(1): 34–42, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22487  相似文献   
6.
This paper deals with a DC-micro-grid with renewable energy. The proposed method is composed of a gearless wind power generation system, a battery, and DC loads in a DC distribution system. The battery helps to avoid the DC over-voltages by absorbing the power of the permanent magnet synchronous generator (PMSG) during line-fault. In addition, the control schemes presented in this paper including the maximum power point tracking (MPPT) control and a pitch angle control for the gearless wind turbine generator. By means of the proposed method, high-reliable power can be supplied to the DC distribution system during the line-fault and stable power supply from the PMSG can be achieved after line-fault clearing. The effectiveness of the proposed method is examined in a MATLAB/Simulink® environment.  相似文献   
7.
The generalized scaling law is based on the concept of two-stage scaling and allows currently available centrifuge facilities to model a large-scale prototype expanding over the spatial dimension ranging from 30 m or larger subject to earthquake motions. This paper presents the results of investigation on the applicability of the generalized scaling law to the fully nonlinear regime of soil-structure system with the induced strain level of 10% in the order of magnitude. The centrifuge model tests performed in this study under the modeling of models scheme consist of a pile model embedded in a inclined ground subject to liquefaction-induced lateral spreading. Four different centrifugal accelerations ranging from 13g to 50g are used whereas the actual size of the physical model is kept constant with an overall scaling factor of 1/100. The models are exposed to tapered sinusoidal input accelerations of frequency 0.59 Hz and amplitude 3.0 m/s2 in prototype scale, and the results are compared in terms of prototype by applying the generalized scaling law. As for the response of the ground during shaking, essentially identical accelerations and excess pore water pressures are recorded for all cases, while the lateral displacement shows a variation ranging from 5% to 9% in terms of shear strain due to a slight variation in experimental conditions (e.g., input peak acceleration, achieved density distribution). Practically the same responses are measured among the cases in the dissipation phase of excess pore water pressure. With regard to pile behavior, nearly identical responses for the lateral displacements and bending moments are obtained for all cases both during and after shaking. These results demonstrated that the generalized scaling law is applicable to the fully nonlinear regime of soil-structure system subject to the cumulative shear strain in the order of 10% due to cyclic mobility of sands during earthquakes.  相似文献   
8.
We describe an approach for the combination of biomolecular interaction analysis (BIA) and electrospray tandem mass spectrometry (ESI/MS/MS) to obtain sequence information on the affinity-bound proteins on the sensor chip of BIA. The procedure is illustrated with stable and unstable interactions of recombinant proteins, i.e., histidine-tagged protein-Ni2+/NTA and 1,4,5-inositol trisphosphate receptor-ligand interactions. The E. coli lysates expressing the recombinant proteins were passed through the sensor chips, and biomolecular interactions were monitored in real time. The molecules detected on the sensor chip were digested by delivering proteolytic enzyme to the sensing flow cells. The resulting on-chip digested peptide mixture at the mid- to low-femtomole level was recovered on a microcapillary reversed-phase precolumn by an on-line system and analyzed using HPLC-MS/MS. In both cases, unambiguous sequence information on the recombinant proteins isolated on the sensor chip was obtained from only a single run of analysis. The combined BIA-MS/MS may prove to be a general and versatile system to discover novel biomolecular interactions and to analyze protein complexes.  相似文献   
9.
Optical tweezers are powerful tools for manipulating single DNA molecules using fluorescence microscopy, particularly in nanotechnology‐based DNA analysis. We previously proposed a manipulation technique using microstructures driven by optical tweezers that allows the handling of single giant DNA molecules of millimetre length that cannot be manipulated by conventional techniques. To further develop this technique, the authors characterised the microstructures quantitatively from the view point of fabrication and efficiency of DNA manipulation under a fluorescence microscope. The success rate and precision of the fabrications were evaluated. The results indicate that the microstructures are obtained in an aqueous solution with a precision ∼50 nm at concentrations in the order of 106 particles/ml. The visibility of these microstructures under a fluorescence microscope was also characterised, along with the elucidation of the fabrication parameters needed to fine tune visibility. Manipulating yeast chromosomal DNA molecules with the microstructures illustrated the relationship between the efficiency of manipulation and the geometrical shape of the microstructure. This report provides the guidelines for designing microstructures used in single DNA molecule analysis based on on‐site DNA manipulation, and is expected to broaden the applications of this technique in the future.Inspec keywords: DNA, molecular biophysics, fluorescence, optical microscopy, radiation pressure, biological techniquesOther keywords: optically driven microstructures, single DNA molecule analysis, fluorescence microscopy, optical tweezers, nanotechnology‐based DNA analysis, manipulation technique, aqueous solution, fine tune visibility, yeast chromosomal DNA molecules, geometrical shape, on‐site DNA manipulation  相似文献   
10.
Elevated level of cellular lipid peroxidation can increase the incidence of vascular disease. The mechanism by which ketosis causes accelerated cellular damage and vascular disease in diabetes is not known. This study was undertaken to test the hypothesis that elevated levels of ketone bodies increase lipid peroxidation in endothelial cells. Human umbilical venous endothelial cells (HUVEC) were cultured for 24 h at 37 degrees C with ketone bodies (acetoacetate, beta-hydroxybutyrate). Acetoacetate, but not beta-hydroxybutyrate, caused an increase in lipid peroxidation and growth inhibition in cultured HUVEC. To determine whether ketone bodies generate oxygen radicals, studies using cell-free buffered solution were performed. They showed a significant superoxide dismutase (SOD) inhibitable reduction of cytochrome C by acetoacetate, but not by beta-hydroxybutyrate, suggesting the generation of superoxide anion radicals by acetoacetate. Additional studies show that Fe2+ potentiates oxygen radical generation by acetoacetate. Thus, elevated levels of ketone body acetoacetate can generate oxygen radicals and cause lipid peroxidation in endothelial cells, providing a possible mechanism for the increased incidence of vascular disease in diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号