首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   3篇
化学工业   5篇
轻工业   5篇
无线电   2篇
一般工业技术   14篇
自动化技术   3篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
The choice of effective biocides used for routine hospital practice should consider the role of disinfectants in the maintenance and development of local resistome and how they might affect antibiotic resistance gene transfer within the hospital microbial population. Currently, there is little understanding of how different biocides contribute to eDNA release that may contribute to gene transfer and subsequent environmental retention. Here, we investigated how different biocides affect the release of eDNA from mature biofilms of two opportunistic model strains Pseudomonas aeruginosa ATCC 27853 (PA) and Staphylococcus aureus ATCC 25923 (SA) and contribute to the hospital resistome in the form of surface and water contaminants and dust particles. The effect of four groups of biocides, alcohols, hydrogen peroxide, quaternary ammonium compounds, and the polymeric biocide polyhexamethylene guanidine hydrochloride (PHMG-Cl), was evaluated using PA and SA biofilms. Most biocides, except for PHMG-Cl and 70% ethanol, caused substantial eDNA release, and PHMG-Cl was found to block biofilm development when used at concentrations of 0.5% and 0.1%. This might be associated with the formation of DNA–PHMG-Cl complexes as PHMG-Cl is predicted to bind to AT base pairs by molecular docking assays. PHMG-Cl was found to bind high-molecular DNA and plasmid DNA and continued to inactivate DNA on surfaces even after 4 weeks. PHMG-Cl also effectively inactivated biofilm-associated antibiotic resistance gene eDNA released by a pan-drug-resistant Klebsiella strain, which demonstrates the potential of a polymeric biocide as a new surface-active agent to combat the spread of antibiotic resistance in hospital settings.  相似文献   
2.
Modifications of indium-tin-oxide (ITO) and copper phthalocyanine (CuPc) layers by heat treatment aimed at lowering driving voltage in organic light-emitting diodes (OLEDs) are examined. Significant changes were observed in the surface morphology and carrier injection properties of ITO and CuPc layers after annealing at T = 250 °C for 0-60 min in a glove box. In the case of ITO annealing, although the ITO work function gradually decreased and the surface of the ITO layer became smoother than that of an unannealed ITO layer, we observed an appreciable decrease in the driving voltage with an increase in annealing time. In the case of CuPc annealing, on the other hand, we observed deterioration of the OLED's characteristics. All devices demonstrated an increase in driving voltage due to the pronounced crystallization of the CuPc layer.  相似文献   
3.
4.
For the development of ultra-sensitive electrical bio/chemical sensors based on nanowire field effect transistors (FETs), the influence of the ions in the solution on the electron transport has to be understood. For this purpose we establish a simulation platform for nanowire FETs in the liquid environment by implementing the modified Poisson-Boltzmann model into Landauer transport theory. We investigate the changes of the electric potential and the transport characteristics due to the ions. The reduction of sensitivity of the sensors due to the screening effect from the electrolyte could be successfully reproduced. We also fabricated silicon nanowire Schottky-barrier FETs and our model could capture the observed reduction of the current with increasing ionic concentration. This shows that our simulation platform can be used to interpret ongoing experiments, to design nanowire FETs, and it also gives insight into controversial issues such as whether ions in the buffer solution affect the transport characteristics or not.  相似文献   
5.
Crystals melt when thermal excitations or the concentration of defects in the lattice is sufficiently high. Upon melting, the crystalline long‐range order vanishes, turning the solid to a fluid. In contrast to this classical scenario of solid melting, here a counter‐intuitive behavior of the occurrence of crystalline long‐range order in an initially disordered matrix is demonstrated. This unusual solidification is demonstrated in a system of passive colloidal particles accommodating chemically active defects—photocatalytic Janus particles. The observed crystallization occurs when the amount of active‐defect‐induced fluctuations (which is the measure of the effective temperature) reaches critical value. The driving mechanism behind this unusual behavior is purely internal and resembles a blast‐induced solidification. Here, the role of “internal micro‐blasts” is played by the photochemical activity of defects residing in the colloidal matrix. The defect‐induced solidification occurs under non‐equilibrium conditions: the resulting solid exists as long as a constant supply of energy in the form of ion flow is provided by the catalytic photochemical reaction at the surface of active Janus particle defects. The findings could be useful for the understanding of the phase transitions of matter under extreme conditions far from thermodynamic equilibrium.  相似文献   
6.
7.
2D molybdenum disulfide (MoS2) gives a new inspiration for the field of nanoelectronics, photovoltaics, and sensorics. However, the most common processing technology, e.g., liquid‐phase based scalable exfoliation used for device fabrication, leads to the number of shortcomings that impede their large area production and integration. Major challenges are associated with the small size and low concentration of MoS2 flakes, as well as insufficient control over their physical properties, e.g., internal heterogeneity of the metallic and semiconducting phases. Here it is demonstrated that large semiconducting MoS2 sheets (with dimensions up to 50 µm) can be obtained by a facile cathodic exfoliation approach in nonaqueous electrolyte. The synthetic process avoids surface oxidation thus preserving the MoS2 sheets with intact crystalline structure. It is further demonstrated at the proof‐of‐concept level, a solution‐processed large area (60 × 60 µm) flexible Ebola biosensor, based on a MoS2 thin film (6 µm thickness) fabricated via restacking of the multiple flakes on the polyimide substrate. The experimental results reveal a low detection limit (in femtomolar–picomolar range) of the fabricated sensor devices. The presented exfoliation method opens up new opportunities for fabrication of large arrays of multifunctional biomedical devices based on novel 2D materials.  相似文献   
8.
ABRACADABRA (ABRA) is an evidence-based suite of interactive multimedia that engages learners in the development of core reading skills. This meta-analysis presents an update of the research evidence about the effectiveness of ABRA for elementary students. It reports 91 effect sizes in six reading-related outcomes for a sample of 7,388 students. Regardless of context and measurement type, the studies yielded positive effects of ABRA, ranging in magnitude from g+ = 0.080 for Vocabulary Knowledge to g+ = 0.378 for Phonemic Awareness and reaching statistical significance in four outcome categories. This meta-analysis adds to our understanding of the effectiveness of ABRA-based reading instruction by exploring factors of research design, ABRA design and implementation contexts, and various student characteristics and offers implications for instructional practice.  相似文献   
9.
Lately certain cytotoxicity of quantum dots (QDs) and some deleterious effects of labeling procedure on stem cells differentiation abilities were shown. In the present study we compared cytotoxicity and intracellular processing of two different-sized protein-conjugated QDs after labeling of the human mesenchymal stem cells (hMSC). An asymmetrical intracellular uptake of red (605 nm) and green (525 nm) quantum dots was observed. We describe for the first time a size-dependent activation of autophagy, caused by nanoparticles.  相似文献   
10.
High-k hafnium-silicate films were deposited by RF magnetron sputtering approach on silicon wafer. The microstructure has been investigated using the combination of transmission electron microscopy and atom probe tomography. It was evidenced that the elaborated HfSiO thin films subsequently annealed at 950 °C during 15 min leads to a complex phase separated nanostructure where silica, hafnia and silicon nanoclusters coexist. The formation of silicon nanoclusters in hafnia-based host was never reported before. The results demonstrate the capability of RF magnetron sputtering to pave the way for realization of nanomemory devices based on silicon clusters embedded in high-k matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号