首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
一般工业技术   1篇
  2001年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Carbon/carbon composites are processed by chemical vapor infiltration (CVI) with radio-frequency inductive heating, which leads to inside-out temperature gradients, suitable for the production of homogeneously densified pieces if properly controlled throughout the whole processing. We present here a 2D axisymmetrical case where a comprehensive numerical model is tested against experimental runs. The numerical thermal model takes into account induction heating, radiative, conductive, and convective effects, intermediate regime diffusion and densification reactions in the pores, and the evolution of the porous medium. The results are the time evolution of the temperature, concentration, and composite material density field, as well as the input power necessary to ensure a given maximal temperature in the preform. Experimental data are measurements of the temperature and density fields at various infiltration stages. Comparison between experience and simulation, yielding an useful agreement, shows that porosity becomes trapped inside the preform as densification proceeds, because of the progressive lowering of the temperature gradient steepness. The discrepancies between computations and experimental data rely on the only approximate knowledge of some quantities, principally the reaction kinetics, which are currently under investigation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号