首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
  国内免费   2篇
化学工业   7篇
金属工艺   3篇
建筑科学   1篇
能源动力   5篇
轻工业   3篇
水利工程   1篇
无线电   1篇
一般工业技术   8篇
冶金工业   2篇
自动化技术   3篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   6篇
  2006年   1篇
  2005年   1篇
  2001年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
Bacterial trapping using nanonets is a ubiquitous immune defense mechanism against infectious microbes. These nanonets can entrap microbial cells, effectively arresting their dissemination and rendering them more vulnerable to locally secreted microbicides. Inspired by this evolutionarily conserved anti-infective strategy, a series of 15 to 16 residue-long synthetic β-hairpin peptides is herein constructed with the ability to self-assemble into nanonets in response to the presence of bacteria, enabling spatiotemporal control over microbial killing. Using amyloid-specific K114 assay and confocal microscopy, the membrane components lipoteichoic acid and lipopolysaccharide are shown to play a major role in determining the amyloid-nucleating capacity as triggered by Gram-positive and Gram-negative bacteria respectively. These nanonets displayed both trapping and killing functionalities, hence offering a direct improvement from the trap-only biomimetics in literature. By substituting a single turn residue of the non-amyloidogenic BTT1 peptide, the nanonet-forming BTT1-3A analog is produced with comparable antimicrobial potency. With the same sequence manipulation approach, BTT2-4A analog modified from BTT2 peptide showed improved antimicrobial potency against colistin-resistant clinical isolates. The peptide nanonets also demonstrated robust stability against proteolytic degradation, and promising in vivo efficacy and biosafety profile. Overall, these bacteria-responsive peptide nanonets are promising clinical anti-infective alternatives for circumventing antibiotic resistance.  相似文献   
2.
A new anode composition comprising SiO and graphite(C) is prepared through a high-energy ball milling process. During the first cycle, the anode delivers high discharge and charge capacity values of 1556 and 693 mAh g−1, respectively. The electrode shows a reversible charge capacity value of 688 mAh g−1 at the 30th cycle with 99% Coulombic efficiency. X-ray diffraction analysis reveals that ball milling does not produce any new compound, but only causes a reduction in particle size. The irreversible and reversible capacities appear to be interdependent.  相似文献   
3.
We used artificial neural networks (ANN) to compute parameters characterising biofilm structure from biofilm images and to interpolate a limited number of experimental data characterising the effects of nutrient concentration and flow velocity on the areal porosity of biofilms. ANN were trained using a set of experimental data characterising structural parameters of biofilms of Pseudomonas aeruginosa (ATCC #700829), Pseudomonas fluorescens (ATCC #700830) and Klebsiella pneumoniae (ATCC #700831) for various flow velocities and glucose concentrations. We used 80% of the data to train ANN and 10% of the data to validate the results, which is routinely carried out as a countermeasure against overtraining. Trained ANN were used to interpolate into the data set and evaluate the missing 10% of the data. To compare ANN accuracy in evaluating the missing data with the accuracies achieved using other interpolation algorithms, we used spline, cubic, linear and nearest-neighbour interpolation algorithms to evaluate the missing data. ANN estimates were consistently closer to the experimental data than the estimates made using the other methods.  相似文献   
4.
We recently demonstrated that chemical proteasome inhibition induced inner retinal degeneration, supporting the pivotal roles of the ubiquitin–proteasome system in retinal structural integrity maintenance. In this study, using beclin1-heterozygous (Becn1-Het) mice with autophagic dysfunction, we tested our hypothesis that autophagy could be a compensatory retinal protective mechanism for proteasomal impairment. Despite the reduced number of autophagosome, the ocular tissue morphology and intraocular pressure were normal. Surprisingly, Becn1-Het mice experienced the same extent of retinal degeneration as was observed in wild-type mice, following an intravitreal injection of a chemical proteasome inhibitor. Similarly, these mice equally responded to other chemical insults, including endoplasmic reticulum stress inducer, N-methyl-D-aspartate, and lipopolysaccharide. Interestingly, in cultured neuroblastoma cells, we found that the mammalian target of rapamycin-independent autophagy activators, lithium chloride and rilmenidine, rescued these cells against proteasome inhibition-induced death. These results suggest that Becn1-mediated autophagy is not an effective intrinsic protective mechanism for retinal damage induced by insults, including impaired proteasomal activity; furthermore, autophagic activation beyond normal levels is required to alleviate the cytotoxic effect of proteasomal inhibition. Further studies are underway to delineate the precise roles of different forms of autophagy, and investigate the effects of their activation in rescuing retinal neurons under various pathological conditions.  相似文献   
5.
In this article, brightness preserving bi‐level fuzzy histogram equalization (BPFHE) is proposed for the contrast enhancement of MRI brain images. Histogram equalization (HE) is widely used for improving the contrast in digital images. As a result, such image creates side‐effects such as washed‐out appearance and false contouring due to the significant change in brightness. In order to overcome these problems, mean brightness preserving HE based techniques have been proposed. Generally, these methods partition the histogram of the original image into sub histograms and then independently equalize each sub‐histogram. The BPFHE consists of two stages. First, fuzzy histogram is computed based on fuzzy set theory to handle the inexactness of gray level values in a better way compared to classical crisp histograms. In the second stage, the fuzzy histogram is divided into two sub‐histograms based on the mean intensities of the multi‐peaks in the original image and then equalizes them independently to preserve image brightness. The quantitative and subjective enhancement of proposed BPBFHE algorithm is evaluated using two well known parameters like entropy or average information contents (AIC) and Feature Similarity Index Matrix (FSIM) for different gray scale images. The proposed method have been tested using several images and gives better visual quality as compared to the conventional methods. The simulation results show that the proposed method has better performance than the existing methods, and preserve the original brightness quite well, so that it is possible to be utilized in medical image diagnosis.  相似文献   
6.
Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to their high strength-to-weight ratio and high hardness. These steels are prone to hydrogen-induced cracking in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel consumables to weld the above steel was the only remedy because of higher solubility for hydrogen in austenitic phase. Recent studies proved that high nickel steel and low hydrogen ferritic steel consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the effect of welding consumables on high cycle fatigue properties of high strength, Q&T steel joints. Three different consumables namely (i) austenitic stainless steel, (ii) low hydrogen ferritic steel, and (iii) high nickel steel have been used to fabricate the joints by shielded metal arc (SMAW) welding process. The joints fabricated using low hydrogen ferritic steel electrodes showed superior fatigue properties than other joints.  相似文献   
7.
Austenitic stainless steel, low hydrogen ferritic steel and high nickel steel consumables are used for the welding of armor-grade quenched and tempered (Q&T) steels. The use of such consumables in the welding of armorgrade Q&T steel leads to the formation of distinct microstructures in the respective welds and has a major influence on the dynamic fracture toughness. Hence, this paper examines how shielded metal arc welding consumables affect the dynamic fracture toughness (J1d) of armor-grade Q&T steel joints. The J1d values of joints fabricated with high nickel steel joints are superior than all other joints.  相似文献   
8.
A new anode composite material is prepared by thermal treatment of a blend made of silicon monoxide (SiO) and lithium hydroxide (LiOH) at 550 °C followed by ball milling with graphite. X-ray diffraction pattern confirms the presence of Li4SiO4 in the thermally treated (SiO + LiOH) material. The electrode appears to be smooth and glassy as evident from observation with a scanning electron microscope (SEM), possibly due to the presence of nano-silicon and Li4SiO4 particles, and exhibits superior performance with a charge capacity of ∼333 mAh g−1 at the 100th cycle with a low-capacity fade on cycling. Cyclic voltammograms of the electrode predict high power capability. On the other hand, the electrode comprising of only SiO and C prepared through ball milling, devoid of Li4SiO4, shows hard crust particulates in the electrode exhibiting low charge–discharge capacities with cycling.  相似文献   
9.
The behaviour of zinc and zinc oxide in 5.3 M KOH in the presence of alkaline earth oxides, SnO, Ni(OH)2 and Co(OH)2 was examined by cyclic voltammetry. The influence of the alkaline earth oxides was compared with additives of established effects (Bi2O3, LiOH, Na2CO3 and CdO). The alkaline earth oxide each exhibits a distinct behaviour towards zincate. Whereas, a single process of interaction with zincate was shown by CaO; two modes of reaction were obtained with SrO and BaO. Solid solution formation was noticed with BeO and MgO. The other additives forming solid solution with ZnO were CdO, SnO. The ionic sizes of Ni(OH)2 and Co(OH)2 allow solid solution formation with Zn(OH)2. Both Bi2O3 and Na2CO3 enter into complexation with zincate. LiOH forms two distinct zincates, of which one is an oxo zincate leaching the `hydroxyl' functionality. Cyclic voltammetry revealed the deposition of the oxide/hydroxide additives as metal prior to the onset of zinc deposition and the potential range for this additive metal deposition is almost the same for different additives (SnO, CdO, Ni(OH)2). The beneficial action of these additives to zinc alkaline cells is associated with a substrate effect. The implication of this electrocatalytic deposition of metals on a zinc oxide electrode is also discussed.  相似文献   
10.
Power generated by microbial fuel cells is computed as a product of current passing through an external resistor and voltage drop across this resistor. If the applied resistance is very low, then high instantaneous power generated by the cell is measured, which is not sustainable; the cell cannot deliver that much power for long periods of time. Since using small electrical resistors leads to erroneous assessment of the capabilities of microbial fuel cells, a question arises: what resistor should be used in such measurements? To address this question, we have defined the sustainable power as the steady state of power delivery by a microbial fuel cell under a given set of conditions and the maximum sustainable power as the highest sustainable power that a microbial fuel cell can deliver under a given set of conditions. Selecting the external resistance that is associated with the maximum sustainable power in a microbial fuel cell (MFC) is difficult because the operator has limited influence on the main factors that control power generation: the rate of charge transfer at the current-limiting electrode and the potential established across the fuel cell. The internal electrical resistance of microbial fuel cells varies, and it depends on the operational conditions of the fuel cell. We have designed an empirical procedure to predict the maximum sustainable power that can be generated by a microbial fuel cell operated under a given set of conditions. Following the procedure, we change the external resistors incrementally, in steps of 500 omega every 10, 60, or 180 s and measure the anode potential, the cathode potential, and the cell current. Power generated in the microbial fuel cell that we were using was limited by the anodic current. The anodic potential was used to determine the condition where the maximum sustainable power is obtained. The procedure is simple, microbial fuel cells can be characterized within an hour, and the results of the measurements can serve many purposes, such as: (1) estimating power generation in various MFCs, (2) comparing power generation in MFCs using different electroactive reactants, (3) quantifying the effects of the operational regime on the power generation in MFCs, and finally, (4) the purpose for which the procedure was designed, optimizing the performance of existing MFCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号