首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
一般工业技术   1篇
  2017年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Layers from two different delaminated dispersions of 3-aminopropyltriethoxysilane (APTES)-intercalated montmorillonite (Mts) and octylamine (OA)-intercalated graphene oxide (GO) could be co-stacked to obtain APTES-intercalated Mts (Mts-APTES)/OA-intercalated GO (GO-OA) interstratified composites (MAGO). The synthesized composites were characterized by XRD, FTIR, BET, TGA, TEM and XPS, which showed that MAGO had been prepared successfully. The optimal concentration of APTES was 8% in anhydrous toluene which avoided self-polymerization of APTES while facilitating the nucleophilic attack of APTES amine groups and the protic character of ethanol to compete with silane for the intimal hydroxyl groups by H-bonding. The MAGO demonstrated an extremely fast Cr(VI) removal from aqueous solution with a high removal efficiency at low pH. Data from batch studies of the adsorption process followed pseudo-second-order kinetics. The results fit a Langmuir model of adsorption, with maximum adsorption capacities of MAGO composites at pH 3.0 being 44.25 mg g?1, 47.46 mg g?1, 49.58 mg g?1 under 30 °C, 40 °C, 50 °C, respectively, which were much higher than capacities of some conventional adsorbents. The reusability of the MAGO composite was also determined through adsorption-desorption studies, providing evidence for the potential use of MAGO composite in the removal of Cr(VI) from acidic wastewater.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号