首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学工业   7篇
金属工艺   1篇
建筑科学   1篇
能源动力   1篇
一般工业技术   2篇
冶金工业   3篇
自动化技术   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
排序方式: 共有16条查询结果,搜索用时 156 毫秒
1.
2.
3.
Aluminu–matrix composites produced by Ni3Al intermetallic particles are increasingly used in aerospace and structural applications because of their outstanding properties. In manufacturing of metal–matrix composites using powder metallurgy blending and milling are important factors. They control the final distribution of reinforcement particles and porosity in green compacts which in turn, strongly affect the mechanical properties of the produced PM materials. This paper studies different conditions for producing composite powders with uniform dispersion of Ni3Al particles in aluminum powders and improved physical and mechanical properties. The results indicated that an intermediate milling time for fabrication of composite powder, better than prolonged and shortened ones, causes better microstructure and properties. It was shown that addition of 5 vol.% Ni3Al particles, produced by 15 h mechanical alloying to aluminum powders, and then 12 h blending operation provides an appropriate condition for producing Al–Ni3Al composite powder.  相似文献   
4.
Stem cells are recognized by their self-renewal ability and can give rise to specialized progeny. Hydrogels are an established class of biomaterials with the ability to control stem cell fate via mechanotransduction. They can mimic various physiological conditions to influence the fate of stem cells and are an ideal platform to support stem cell regulation. This review article provides a summary of recent advances in the application of different classes of hydrogels based on their source (e.g., natural, synthetic, or hybrid). This classification is important because the chemistry of substrate affects stem cell differentiation and proliferation. Natural and synthetic hydrogels have been widely used in stem cell regulation. Nevertheless, they have limitations that necessitate a new class of material. Hybrid hydrogels obtained by manipulation of the natural and synthetic ones can potentially overcome these limitations and shape the future of research in application of hydrogels in stem cell regulation.  相似文献   
5.
ABSTRACT

The effect of sintering variables on the zinc loss during sintering of brass was investigated. Zinc loss, evident through mass change, starts during heating of the powder at approximately 700°C. By supersolidus liquid phase sintering of the cold-pressed brass powder, the maximum amount of zinc loss occurred at lower temperatures and prolonged sintering times. At higher temperatures, especially near the zinc boiling point, the rate of zinc loss from the surface is surprisingly moderate since closing of the pores causes zinc to be trapped in the samples. At lower temperatures, in contrast, when the pores in the surface are open and there is also a lower volume fraction of liquid phase, zinc can easily escape from the samples. Generally, it was thus concluded that during sintering, zinc loss depends more strongly on the pore connectivity and the specific surface than just on the nominal vapour pressure.  相似文献   
6.
 Increasing density is one of the important factors for producing high quality powder metallurgy (PM) parts, which has beneficial effect on mechanical properties. One of the common techniques for achieving this goal is double compacting, which seems to be a potentially attractive method in PM route, also for Cr-Mo alloyed-steels. The objective of this research was to investigate the effect of first compacting pressure and intermediate annealing temperature on attaining higher densities and minimum interconnected porosity for Cr-Mo pre-alloyed steel. The effect of mentioned parameters was studied by measuring density, transverse rupture strength and macrohardness of repressed samples. The results show that for each first compacting pressure, the density range of repressed samples increases with the increasing annealing temperature up to a certain limit, due to C dissolution which causes free porosity and further densification. Annealing temperatures higher than optimum one should be avoided, since too much carbon dissolution results in harder and less deformable compacts. On the other hand, with regard to repressed density and other resulted properties, the amount of first compacting pressure offers considerable advantage in obtaining higher level of density and consequently improved mechanical properties.  相似文献   
7.
Coating with dense and fine particles containing fewer cracks and lower porosity shows more improved protective properties due to limiting pathways between the environment and base metal. The main aim of present research is to introduce an innovative method that is called rephosphating to achieve this morphology. The outstanding point of the present investigation is to highlight the significant effect of surface pretreatment by secondary grinding of phosphated surface and then rephosphating of this surface to obtain a coating with appropriate properties. The SEM observations showed that this method has an obvious influence on the formation of a very uniform zinc phosphate coating on the plain carbon steel compared with the traditional method of phosphating. Furthermore, the protecting properties of phosphated and rephosphated samples were described and compared using the neutral salt spray and the electrochemical polarization tests. The results showed that rephosphating method had a beneficial effect on improving the corrosion resistance. As well, improved paint adhesion of rephosphated sample was observed compared with that of the phosphated sample. Finally, it was concluded that when rephosphating method can be used to repair damaged phosphated areas, the coating with more compact morphology and improved properties can be achieved.  相似文献   
8.
Spark plasma sintering (SPS) was employed to fabricate monolithic titanium and in-situ formed TiB whisker (TiBw) reinforced titanium matrix composites (TMCs) by adding different amounts of TiB2 as boron source. The sintering process was completed at 1050 °C for 5 min under 50 MPa. The influences of TiB2 content (0.6–9.6 wt. %) on microstructural evolution and mechanical properties of TMCs were investigated. Thermodynamics, XRD analysis and microstructural investigations confirmed the in-situ formation of TiBw in the composite samples. However, some semi-reacted TiB2 phases, surrounded by TiB coronas, were remained in the microstructure due to the unfinished chemical reaction between the components during a short-time sintering process. The results showed that all samples were appropriately densified by SPS process into the almost dense parts with relative density no less than 97.5%. While bending strength decreased and hardness increased with increasing TiB2 content, the sample with 4.8 wt. % TiB2 had the maximum tensile strength. Fractographical assessments showed that the addition of TiB2 hindered the grain growth of titanium matrix. With increasing TiB2 content, fracture mode changed from a multiple pattern to a predominantly transgranular and brittle state.  相似文献   
9.
During biodiesel production, the product is contaminated with impurities such as some non-reacted alcohol, glycerol, and catalyst. In order to comply with product requirements, these impurities must be removed, for example, by washing with water. Knowledge of the extent of water solubility in biodiesel is required to design the drying system and determine fuel quality. In the present work, the solubilities of water in biodiesels produced from sunflower and canola oils were measured within the temperature range of 24–60 °C. The solubility of water increased with increasing temperature and biodiesel unsaturation. The liquid–liquid equilibria of ternary systems of glycerol, methanol, and the above-mentioned biodiesels were investigated experimentally at 20, 30, and 40 °C. The binodal curves were determined by using the cloud point titration method and the tie lines were measured by evaporating the methanol. Both binary and ternary data were modeled using the UNIQUAC model. The model showed good agreement with the data. Othmer-Tobias correlations were applied and the corresponding constants were obtained. The results validated the consistency of the tie-line data obtained experimentally.  相似文献   
10.
Javanpour  Bahareh  Azadbeh  Maziyar  Mozammel  Mahdi 《SILICON》2020,12(4):867-882
Silicon - The current study indicates the application of three different range of hybrid sols on substrates. The aim was to achieve an optimum chemical composition on the silane- treated surface in...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号