首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   1篇
电工技术   3篇
化学工业   36篇
金属工艺   3篇
机械仪表   15篇
建筑科学   5篇
能源动力   2篇
轻工业   6篇
水利工程   1篇
无线电   9篇
一般工业技术   43篇
冶金工业   22篇
原子能技术   4篇
自动化技术   33篇
  2023年   1篇
  2022年   4篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   18篇
  2012年   10篇
  2011年   9篇
  2010年   8篇
  2009年   6篇
  2008年   9篇
  2007年   7篇
  2006年   3篇
  2005年   6篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   6篇
  1986年   3篇
  1984年   2篇
  1983年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1969年   3篇
  1968年   3篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
1.
Approximate solutions are suggested for receding horizon dual control to guarantee acceptable control performance of a plant with large a priori parameter uncertainties under poor excitation by the output reference and to satisfy the requirement of very fast adaptation using knowledge available on sensor and performance in industrial applications of adaptive control. the aim of the paper is to present several levels of interaction between on-line identification and control performance using parameter bounds. an interesting theorem shows that parameter bounding is a necessary part of the solution of the dual control problem. Starting from the complete separation of identification and control, various approximations are presented at different levels of optimality. Finally, the exact solution of the dual control problem is found for static gain adaptation, which implicitly involves a parameter-bounding identification procedure.  相似文献   
2.
We present several results on the complexity of various forms of Sperner’s Lemma in the black-box model of computing. We give a deterministic algorithm for Sperner problems over pseudo-manifolds of arbitrary dimension. The query complexity of our algorithm is linear in the separation number of the skeleton graph of the manifold and the size of its boundary. As a corollary we get an deterministic query algorithm for the black-box version of the problem 2D-SPERNER, a well studied member of Papadimitriou’s complexity class PPAD. This upper bound matches the deterministic lower bound of Crescenzi and Silvestri. The tightness of this bound was not known before. In another result we prove for the same problem an lower bound for its probabilistic, and an lower bound for its quantum query complexity, showing that all these measures are polynomially related. Research supported by the European Commission IST Integrated Project Qubit Application (QAP) 015848, the OTKA grants T42559 and T46234, and by the ANR Blanc AlgoQP grant of the French Research Ministry.  相似文献   
3.
The hitting time of a classical random walk (Markov chain) is the time required to detect the presence of—or equivalently, to find—a marked state. The hitting time of a quantum walk is subtler to define; in particular, it is unknown whether the detection and finding problems have the same time complexity. In this paper we define new Monte Carlo type classical and quantum hitting times, and we prove several relationships among these and the already existing Las Vegas type definitions. In particular, we show that for some marked state the two types of hitting time are of the same order in both the classical and the quantum case. Then, we present new quantum algorithms for the detection and finding problems. The complexities of both algorithms are related to the new, potentially smaller, quantum hitting times. The detection algorithm is based on phase estimation and is particularly simple. The finding algorithm combines a similar phase estimation based procedure with ideas of Tulsi from his recent theorem (Tulsi A.: Phys. Rev. A 78:012310 2008) for the 2D grid. Extending his result, we show that we can find a unique marked element with constant probability and with the same complexity as detection for a large class of quantum walks—the quantum analogue of state-transitive reversible ergodic Markov chains. Further, we prove that for any reversible ergodic Markov chain P, the quantum hitting time of the quantum analogue of P has the same order as the square root of the classical hitting time of P. We also investigate the (im)possibility of achieving a gap greater than quadratic using an alternative quantum walk. In doing so, we define a notion of reversibility for a broad class of quantum walks and show how to derive from any such quantum walk a classical analogue. For the special case of quantum walks built on reflections, we show that the hitting time of the classical analogue is exactly the square of the quantum walk.  相似文献   
4.
5.
This paper presents adaptive feedback control at individual harmonics for cancellation of periodic disturbances. It is shown that the original idea, that has been around for a long time, can be developed much further to produce robust and highly adaptable controllers. Frequency selective feedback harmonic cancellation (FHC) is presented. Simulations illustrate the effectiveness of the method.  相似文献   
6.
This paper considers the worst-case-dual control problem and discusses its basic properties. The Bellman equation is derived and some simple cases are analysed. Unmodelled dynamics bounded in l 1norm is accounted for. The case of infinite horizon cost function is considered for a special case. Finally simulations show the practical potential of these type of results.  相似文献   
7.
Nanostructured lithium‐manganese‐rich nickel‐manganese‐oxide xLi2MnO3·(1‐x)LiNi0.5Mn0.5O2 (0.3 ≤ x ≤ 0.6) composite materials were synthesized via spray pyrolysis using mixed nitrate precursors. All the materials showed a composite structure consisting of Li2MnO3 (C2/m) and LiNi0.5Mn0.5O2 components, and the amount of Li2MnO3‐phase appeared to increase with x, as observed from XRD analysis. These composite materials showed a high‐discharge capacity of about 250 mAhg?1. In the range of x considered, the layered 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 materials displayed the highest capacity and superior cycle stability. Nonetheless, voltage suppression from a layered‐spinel phase transition was observed for all the composites produced. This voltage suppression was dependent of the amount of Li2MnO3 phase present in the composite structure. © 2013 American Institute of Chemical Engineers AIChE J 60: 443–450, 2014  相似文献   
8.
Emerging SARS-CoV-2 variants pose threats to vaccination campaigns against COVID-19. Being more transmissible than the original virus, the SARS-CoV-2 B.1.617 lineage, named the Delta variant, swept through the world in 2021. The mutations in the Delta’s spike protein shift the protein towards a net positive electrostatic potential. To understand the key molecular drivers of the Delta infection, we investigate the cellular uptake of the Delta spike protein and Delta spike-bearing SARS-CoV-2 pseudoviruses. Specific in vitro modification of ACE2 and syndecan expression enabled us to demonstrate that syndecan-4, the syndecan isoform abundant in the lung, enhances the transmission of the Delta variant by attaching its mutated spike glycoprotein and facilitating its cellular entry. Compared to the wild-type spike, the Delta one shows a higher affinity towards heparan sulfate proteoglycans than towards ACE2. In addition to attachment to the polyanionic heparan sulfate chains, the Delta spike’s molecular interactions with syndecan-4 also involve syndecan-4’s cell-binding domain that mediates cell-to-cell adhesion. Regardless of the complexity of these interactions, exogenously added heparin blocks Delta’s cellular entry as efficiently as syndecan-4 knockdown. Therefore, a profound understanding of the molecular mechanisms underlying Delta infections enables the development of molecularly targeted yet simple strategies to reduce the Delta variant’s spread.  相似文献   
9.
In our recent project the combined effect of argon addition and substrate bias was investigated in the microwave plasma assisted chemical vapor deposition of diamond, focused on the ultrananocrystalline phase. Over the conventional qualifying techniques, i.e., Raman and SEM studies, we have led a special in-situ mass spectrometry investigation to explore the growth mechanism of UNCD, analysing the gas composition close to the surface. To achieve this aim, ion beam mass spectrometry (IBMS) was used for in-situ, real time, mass-selective analysis of the incoming species playing an important role in the MWPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition) of the ultrananocrystalline diamond. In our experiments Ar, CH4, and H2 gases were used as source gases in a wide range of concentrations applying different values of substrate bias to deposit different phases of diamond. By the IBMS technique we can measure the fluxes of different species: CxHy (x = 1–2, y = 0–2) during the phases of deposition, either under the conditions of microcrystalline diamond (MCD), nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD) synthesis. As a result of it, we can compare the different mechanisms of layer formation: i.e.: whether C1 species or C2 mediated growth method takes place, or probably both C1 and C2 species propagate the diamond lattice. Based on the given tendency by comparing the IBMS data (i.e.: fluxes of surface species) with the growth rate, morphology, and Raman spectra of the layers we propose, that in the case of UNCD a similar (but not exactly the same) growth mechanism can be found as in the case of MCD i.e.: C1 species are the most likely precursors.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号