首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   6篇
电工技术   6篇
化学工业   22篇
矿业工程   1篇
能源动力   1篇
轻工业   5篇
水利工程   1篇
无线电   5篇
一般工业技术   16篇
冶金工业   3篇
自动化技术   6篇
  2023年   3篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   1篇
  2017年   5篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
Environmental concerns continue to pose the challenge to replace petroleum-based products with renewable ones completely or at least partially while maintaining comparable properties. Herein, rigid polyurethane (PU) foams were prepared using soy-based polyol for structural and thermal insulation applications. Cell size, density, thermal resistivity, and compression force deflection (CFD) values were evaluated and compared with that of petroleum-based PU foam Baydur 683. The roles of different additives, that is, catalyst, blowing agent, surfactants, and different functionalities of polyol on the properties of fabricated foam were also investigated. For this study, dibutyltin dilaurate was employed as catalyst and water as environment friendly blowing agent. Their competitive effect on density and cell size of the PU foams were evaluated. Five different silicone-based surfactants were employed to study the effect of surface tension on cell size of foam. It was also found that 5 g of surfactant per 100 g of polyol produced a foam with minimum surface tension and highest thermal resistivity (R value: 26.11 m2·K/W). However, CFD values were compromised for higher surfactant loading. Additionally, blending of 5 g of higher functionality soy-based polyol improved the CFD values to 328.19 kPa, which was comparable to that of petroleum-based foam Baydur 683.  相似文献   
2.
The limited options of suitable elastomers with adequate cost-performance balance drive the necessity to introduce new materials in the oil & gas (O&G) application space. The relevance of a recently developed copolymer of chloroprene and acrylonitrile (referred to as acrylonitrile–chloroprene rubber or NCR) to O&G applications is described in this technical contribution. The new elastomer demonstrates adequate physical properties and reasonably good high and low-temperature capabilities. It offers good resistance to several aqueous and non-aqueous fluids with low volume swelling and retains its physical properties to reasonable extents while exposed to hot test oils. Acrylonitrile–chloroprene rubber has been found to sustain “sour gas” exposure. Good abrasion resistance, high tear strength, and remarkably high flex-fatigue resistance coupled with low heat build-up reflect its durability under dynamic conditions. In addition, acrylonitrile–chloroprene rubber can very well withstand the rapid gas decompression test at 25°C. This unique combination of attributes may allow acrylonitrile–chloroprene rubber to be considered as a candidate material for high-performance O&G applications.  相似文献   
3.
Efficient utilization of hydrogen generated during the reactions of nano-silicon/water and nano-aluminum/water in internal combustion engine has been investigated in the current work. Engine performance and emission studies of formulated and stabilized nanoemulsion fuels (water in diesel W/D), nano-aluminum in water/diesel (W/DA) and water in nano-silicon/diesel (W/DS) have been compared with those of diesel. Experimental investigations showed reduction in brake specific fuel consumption (BSFC) by 21% and 37%; rise in brake thermal efficiency (BTE) by 16% and 14% when engine was fueled with W/DA and W/DS respectively. For nanoemulsion fuels an increase in induced power was also recorded. Brake mean effective pressure, BTE and NOx emission dropped for W/D due to reduced exhaust gas temperatures. Nevertheless due to elevated peak cylinder pressures and exhaust gas temperatures a marginal rise in NOx, CO, HC and radiative heat emissions was observed with W/DA and W/DS.  相似文献   
4.
5.
Scientometrics - Social media platforms have now emerged as an important medium for wider dissemination of research articles; with authors, readers and publishers creating different kinds of social...  相似文献   
6.
We present first-principles pseudopotential-based density functional theory (DFT) calculation of structures, full phonon dispersions and thermal properties of armchair single wall armchair carbon nanotubes (SWCNTs) in the isolated and bundle forms. Comparison between the properties of isolated and bundled nanotubes is used to estimate the intertube interaction. We determine correlation between vibrational modes of a graphene sheet and of the nanotube to understand how rolling of the sheet results in mixing between modes and changes in vibrational spectrum. The radial breathing mode hardens with increasing diameter (or decreasing curvature). We estimate thermal expansion coefficient of nanotubes within a quasiharmonic approximation and identify the modes that dominate thermal expansion of some of these SWCNTs both at low and high temperatures.  相似文献   
7.
We have developed self-assembled chitosan/insulin nanoparticles for successful oral insulin delivery. The main purpose of our study is to prepare chitosan/insulin nanoparticles by self-assembly method, to characterize them and to evaluate their efficiency in vivo diabetic model. The size and morphology of the nanoparticles were analyzed by dynamic light scattering (DLS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The average particle size ranged from 200 to 550 nm, with almost spherical or sub spherical shape. An average insulin encapsulation within the nanoparticles was ~ 85%. In vitro release study showed that the nanoparticles were also efficient in retaining good amount of insulin in simulated gastric condition, while significant amount of insulin release was noticed in simulated intestinal condition. The oral administrations of chitosan/insulin nanoparticles were effective in lowering the blood glucose level of alloxan-induced diabetic mice. Thus, self-assembled chitosan/insulin nanoparticles show promising effects as potential insulin carrier system in animal models.  相似文献   
8.
This study aimed at demonstrating the effects of fermentation time (24, 48, 72, 96, and 120 h) and water activity (0.943, 0.970, and 0.985) on the production of cellulolytic enzymes by solid-state fermentation of purple mombin (Spondias purpurea L.) residue using Aspergillus niger. The fermentation was carried out at 35°C and the enzyme production was measured as endoglucanase and total cellulose activities. The optimum condition for endoglucanase was water activity 0.974 and 93.8 h of fermentation, reaching a production of 3.21 U/g of residue; whereas for total cellulase it was 0.958 and 79.4 h achieving 12.1 U/g of residue. Fermentation time had a greater effect on the endoglucanase activity, while water activity had a more significant influence on the total cellulase activity. Endoglucanase had optimum activity at temperature of 50°C and pH 5.0. Although cellulase total optimum activity was also at pH 5.0, the maximum activity was at 60°C.  相似文献   
9.
Cyathophorella adiantum (Griff.) M. Fleisch. (Division-Bryophyta, Family-Daltoniaceae), an Eastern Himalayan moss was studied for the first time to identify the volatiles derived from cellular and membrane bound fatty acids. A high capacity sample enrichment probe (SEP) was used for extraction of headspace volatile (HSV) molecules followed by GC–MS analysis. Different short-chain oxylipins like alkenes, alkanes, saturated and unsaturated alcohols, saturated and unsaturated aldehydes, ketones were identified along with free and esterified fatty acids, cyclo compounds and some by-products of secondary metabolites. Fatty acid analysis of neutral lipids (NL) and phospholipids (PL) of this plant exhibits the predominance of C16 and C18 fatty acids. It also reveals some interesting information that might indicate the possible fatty acid precursors for volatile generation and their sources in this plant.  相似文献   
10.

Abstract  

Catalytic performance of Pt impregnated parent and desilicated nano-crystalline zeolites, ZSM-5 and Beta for n-hexane isomerization was studied. Difference in channel systems of the zeolites and absence/presence of mesopores therein were found to be reflected in product distributions. ZSM-5 was desilicated by NaOH and zeolite Beta with tetramethylammonium hydroxide (TMAOH.) Desilication was found to afford comparable catalytic performance to that of the parent counterpart at reaction temperature lower by 25 °C. Observed product distributions could be substantiated with characterizations such as ammonia TPD, surface area determination and SEM. Desilicated zeolite Beta was seen to be less prone to coking as deduced from the TGA study. Location of Pt with reference to proton sites within the channels and that inside the pores viz a viz external surface also have been discussed briefly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号