首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
电工技术   1篇
化学工业   7篇
机械仪表   2篇
建筑科学   1篇
能源动力   3篇
轻工业   2篇
无线电   11篇
一般工业技术   18篇
原子能技术   1篇
自动化技术   5篇
  2023年   1篇
  2022年   7篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   10篇
  2017年   3篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  1996年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
Silk fibroin (SF), an organic material obtained from the cocoons of a silkworm Bombyx mori, is used in several applications and has a proven track record in biomedicine owing to its superior compatibility with the human body, superb mechanical characteristics, and its controllable propensity to decay. Due to its robust biocompatibility, less immunogenic, non-toxic, non-carcinogenic, and biodegradable properties, it has been widely used in biological and biomedical fields, including wound healing. The key strategies for building diverse SF-based drug delivery systems are discussed in this review, as well as the most recent ways for developing functionalized SF for controlled or redirected medicines, gene therapy, and wound healing. Understanding the features of SF and the various ways to manipulate its physicochemical and mechanical properties enables the development of more effective drug delivery devices. Drugs are encapsulated in SF-based drug delivery systems to extend their shelf life and control their release, allowing them to travel further across the bloodstream and thus extend their range of operation. Furthermore, due to their tunable properties, SF-based drug delivery systems open up new possibilities for drug delivery, gene therapy, and wound healing.  相似文献   
2.
Wireless Networks - Communication systems play an important role in smart grid (SG). Advanced Metering Infrastructure (AMI) is hybrid architecture in smart grid comprising of smart meters and...  相似文献   
3.
The finite difference time domain modeling technique is used to model the near end and far end crosstalk on coupled microstrip structures used in multichip modules. The lines are terminated in lumped resistors which closely, but not exactly, match the lines. One line is excited by a Gaussian voltage pulse produced by a Thévenin equivalent voltage source. It is shown that adding dielectric strips in the substrate below the conducting lines will reduce the peak crosstalk by as much as 80%. Eight different configurations are modeled consisting of dielectric strips with different dielectric constant combinations. All configurations are modeled with and without a metal case in order to make sure that the crosstalk reduction persists when the structure is enclosed in a metallic enclosure (this would be the case for multichip modules). The results show that using dielectric strips with the smallest possible dielectric constant reduces crosstalk the most. © 1996 John Wiley & Sons, Inc.  相似文献   
4.
Journal of Electroceramics - Hematite (α-Fe2O3) nanoparticles were synthesized by modified solution combustion method using a mixture of hexamethylenetetramine (HMTA) and glycine fuels at fuel...  相似文献   
5.
This theoretical analysis explores the effect of heat and mass transfer on particle–fluid suspension for the Rabinowitsch fluid model with the stiffness and dynamic damping effects through Darcy–Brinkman–Forchheimer porous medium. In this study, we also incorporate slip and transverse magnetic field effects. Using low Reynolds number, to neglect inertial forces and to keep the pressure constant during the flow, channel height is used largely as compared with the ratio of length of the wave. A numerical technique is used to solve flow governing system of differential equations. Particular attention is paid to viscous damping force parameter, stiffness parameter, and rigidity parameter; also, the numerical data for thermal profile, momentum, and concentration distribution are presented graphically. Outcomes are deliberated in detail for different fluid models (thinning, thickening, and viscous models). It is found that velocity profile increases for greater values of viscous damping effect and stiffness and rigidity parameter for shear thinning, but conflicting comportment is showed for thickening nature model. Viscous dissipation effects increases the thermal profile for all cases of fluid models. The scope of the present article is valuable in explaining the blood transport dynamics in small vessels while considering the important wall features with chemical reaction characteristics. The current analysis has extensive applications in biomedical engineering field, that is, peristaltic pumps.  相似文献   
6.
In this paper, we propose a simulation model for cognitive radio sensor networks (CRSNs) which is an attempt to combine the useful properties of wireless sensor networks and cognitive radio networks. The existing simulation models for cognitive radios cannot be extended for this purpose as they do not consider the strict energy constraint in wireless sensor networks. Our proposed model considers the limited energy available for wireless sensor nodes that constrain the spectrum sensing process—an unavoidable operation in cognitive radios. Our model has been thoroughly tested by performing experiments in different scenarios of CRSNs. The results generated by the model have been found accurate which can be considered for realization of CRSNs.  相似文献   
7.
Network coding is a data processing technique in which the flow of digital data is optimized in a network by transmitting a composite of two or more messages to make the network more robust. Network coding has been used in traditional and emerging wireless networks to overcome the communications issues of these networks. It also plays an important role in the area of vehicular ad-hoc networks (VANETs) to meet the challenges like high mobility, rapidly changing topology, and intermittent connectivity. VANETs consist of network of vehicles in which they communicate with each other to ensure road safety, free flow of traffic, and ease of journey for the passengers. It is now considered to be the most valuable concept for improving efficiency and safety of future transportation. However, this field has a lot of challenges to deal with. This paper presents a comprehensive survey of network coding schemes in VANETs. We have classified different applications like content distribution, multimedia streaming, cooperative downloading, data dissemination, and summarized other key areas of VANETs in which network coding schemes are implemented. This research work will provide a clear understanding to the readers about how network coding is implemented in these schemes in VANETs to improve performance, reduce delay, and make the network more efficient.  相似文献   
8.
In the present study, a magnetized micropolar nanofluid and motile micro‐organism with variable thermal conductivity over a moving surface have been discussed. The mathematical modeling has been formulated using a second‐grade fluid model and a revised form of the micropolar fluid model. The governing fluid contains micro‐organisms and nanoparticles. The resulting nonlinear mathematical differential equations have been solved with the help of the homotopy analysis method. The graphical and physical features of buoyancy force, micro‐organisms, magnetic field, microrotation, and variable thermal conductivity have been discussed in detail. The numerical results for Nusselt number, motile density number, and Sherwood number are presented with the help of tables. According to the graphical effects, it is noted that the buoyancy ratio and the bioconvection parameter resist the fluid motion. An enhancement in the temperature profile is observed due to the increment in thermal conductivity. Peclet number tends to diminish the motile density profile; however, the viscoelastic parameter magnifies the motile density profile.  相似文献   
9.
Due to the near‐field coupling effect, non‐close‐packed nanoparticle (NP) assemblies with tunable interparticle distance (d) attract great attention and show huge potential applications in various functional devices, e.g., organic nano‐floating‐gate memory (NFGM) devices. Unfortunately, the fabrication of device‐scale non‐close‐packed 2D NPs material still remains a challenge, limiting its practical applications. Here, a facile yet robust “rapid liquid–liquid interface assembly” strategy is reported to generate a non‐close‐packed AuNP superlattice monolayer (SM) on a centimeter scale for high‐performance pentacene‐based NFGM. The d and hence the surface plasmon resonance spectra of SM can be tailored by adjusting the molecular weight of tethered polymers. Precise control over the d value allows the successful fabrication of photosensitive NFGM devices with highly tunable performances from short‐term memory to nonvolatile data storage. The best performing nonvolatile memory device shows remarkable 8‐level (3‐bit) storage and a memory ratio over 105 even after 10 years compared with traditional devices with a AuNP amorphous monolayer. This work provides a new opportunity to obtain large area 2D NPs materials with non‐close‐packed structure, which is significantly meaningful to microelectronic, photovoltaics devices, and biochemical sensors.  相似文献   
10.
Green synthesis of nanoparticles by using plants is an emerging class of nanobiotechnology. It revolutionizes all the fields of nanobiotechnology by synthesizing chemical‐free nanoparticles for various purposes. In the present study, zinc and copper nanoparticles were synthesized by using the white leaves of Allium cepa and further characterized through Zeta analyzer and Scanning electron microscopy. Zeta analyzer elucidated that zinc nanoparticles ranged from 8‐32 nm while copper nanoparticles ranged from 15‐30 nm. Scanning electron microscopy clarified that zinc nanoparticles were irregular while copper nanoparticles were spherical in shape. The effects of green synthesized nanoparticles were evaluated on the germination frequency and biochemical parameters of plant tissues. The nucellus tissues were inoculated on Murashige and Skoog (MS) medium augmented with 30 µg/ml suspension of zinc and copper nanoparticles. Green synthesized nanoparticles enhanced the in vitro germination parameters because of their low toxicity and high efficacy. Significant results were obtained for germination parameters in response to the applications of zinc nanoparticles as compared to copper nanoparticles. These nanoparticles could also induce stress in plantlets by manipulating the endogenous mechanism as a result various defence compounds are produced which have potential in treating various human ailments. Copper nanoparticles showed higher toxicity as compared to zinc nanoparticles and triggered the production of antioxidative enzymes and non‐ enzymatic compounds.Inspec keywords: botany, zinc, copper, nanoparticles, nanofabrication, biochemistry, scanning electron microscopy, electrokinetic effects, biological tissues, toxicology, nanobiotechnology, biological techniquesOther keywords: in vitro germination, biochemical profiling, citrus reticulata, green synthesised zinc nanoparticles, green synthesised copper nanoparticles, green chemistry, secondary metabolites, nanoparticles synthesis, white leaves, Allium cepa, zeta analyser, scanning electron microscopy, onion extract, nucellus tissues, Murashige‐Skoog medium, biologically synthesised nanoparticles, toxicity, root length, shoot length, seedling vigour index, plantlets, endogenous mechanism, human ailments, antioxidative enzymes, nonenzymatic compounds, size 8 nm to 32 nm, Zn, Cu  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号