首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   1篇
金属工艺   2篇
机械仪表   1篇
一般工业技术   1篇
  2020年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The effects of particle sizes/distribution and contents on the processing, changes in microstructure and functional properties of wood polymer composites (WPCs) prepared from virgin high-density polyethylene (vHDPE) and sodium hydroxide (NaOH) treated Daniella oliveri wood flour via compression molding have been explored. Findings from this study suggested that an appropriate choice of wood flour characteristics could improve the interactions between the wood flour and the vHDPE matrix by eliminating incomplete wetting, segregation, and agglomeration of wood flour particles during processing while enhancing mechanical and thermal properties of the composites. Properties of the WPCs were optimized when wood flour of particle sizes/distribution and contents of +210–300 µm and 35 wt%, respectively, were blended with vHDPE matrix.  相似文献   
2.
Surface treatment is one of the most costly processes for treating metallic components against corrosion. Laser-assisted cold spray (LACS) has an opportunity to decrease those costs particularly in transportation systems, chemical industries, and renewable energy systems. This article highlights some of those potential applications. In the LACS process, a laser beam irradiates the substrate and the particles, thereby softening both of them. Consequently, the particles deform upon impact at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS deposition mechanism and microstructural properties is presented. The deposition efficiency, the microstructure, and the microhardness of the LACS-deposited coatings produced by a 4.4-kW Nd:YAG laser system were evaluated. The outcome of this study shows that pore- and crack-free Al-12 wt.%Si coatings were deposited via softening by laser irradiation and adiabatic shearing phenomena at an optimum laser power of 2.5 kW.  相似文献   
3.
Laser-assisted cold spray (LACS) process will be increasingly employed for depositing coatings because of its unique advantages: solid-state deposition of dense, homogeneous, and pore-free coatings onto a range of substrates; and high build rate at reduced operating costs without the use of expensive heating and process inert gases. Depositing coatings with excellent performance indicators via LACS demands an accurate knowledge and control of processing and materials’ variables. By varying the LACS process parameters and their interactions, the functional properties of coatings can be manipulated. Moreover, thermal effect due to laser irradiation and microstructural evolution complicate the interpretation of LACS mechanical deformation mechanism which is essential for elucidating its physical phenomena. In order to provide a basis for follow-on-research that leads to the development of high-productivity LACS processing of coatings, this review focuses on the latest developments in depositing corrosion- and wear-resistant coatings with the emphasis on the composition, structure, and mechanical and functional properties. Historical developments and fundamentals of LACS are addressed in an attempt to describe the physics behind the process. Typical technological applications of LACS coatings are also identified. The investigations of all process sequences, from laser irradiation of the powder-laden gas stream and the substrate, to the impingement of thermally softened particles on the deposition site, and subsequent further processes, are described. Existing gaps in the literature relating to LACS-dependent microstructural evolution, mechanical deformation mechanisms, correlation between functional properties and process parameters, processing challenges, and industrial applications have been identified in order to provide insights for further investigations and innovation in LACS deposition of wear- and corrosion-resistant coatings.  相似文献   
4.
The poor machinability of titanium-based alloys has until now been addressed by either choosing a suitable tool material, management of the heat generated  相似文献   
5.
The effects of sodium hydroxide (NaOH) concentration and time of treatment on the mechanism of fiber/matrix bond and functional properties of Daniella oliveri reinforced wood polymer composites (WPCs) were investigated. The WPCs were evaluated using Fourier transform infrared spectroscopy, mechanical testing, scanning electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry. The fiber/matrix adhesion mechanism could be attributed to the disruption of hydrogen bonding in the D. oliveri wood fiber network structure and the removal of lignin, wax and oils covering the external surface of the fiber cell wall. This leads to an increase in desirable functional properties as alkaline concentrations reached 4 wt%, but subsequently reduced at higher concentrations, while they increased with treatment time. Analysis of the fractographs of the WPCs suggests optimization of interfacial fiber–matrix adhesion and functional properties when D. oliveri wood fiber was treated with a 4 wt% solution of NaOH for 150 min. POLYM. COMPOS., 37:2657–2672, 2016. © 2015 Society of Plastics Engineers  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号