首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   17篇
  国内免费   2篇
电工技术   11篇
化学工业   63篇
金属工艺   2篇
机械仪表   8篇
建筑科学   3篇
能源动力   9篇
轻工业   17篇
水利工程   4篇
石油天然气   8篇
无线电   22篇
一般工业技术   47篇
冶金工业   14篇
自动化技术   42篇
  2023年   3篇
  2022年   6篇
  2021年   13篇
  2020年   9篇
  2019年   19篇
  2018年   14篇
  2017年   17篇
  2016年   18篇
  2015年   11篇
  2014年   14篇
  2013年   23篇
  2012年   26篇
  2011年   13篇
  2010年   6篇
  2009年   10篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   6篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
排序方式: 共有250条查询结果,搜索用时 515 毫秒
1.
2.
In smart environments, pervasive computing contributes in improving daily life activities for dependent people by providing personalized services. Nevertheless, those environments do not guarantee a satisfactory level for protecting the user privacy and ensuring the trust between communicating entities. In this study, we propose a trust evaluation model based on user past and present behavior. This model is associated with a lightweight authentication key agreement protocol (Elliptic Curve-based Simple Authentication Key Agreement). The aim is to enable the communicating entities to establish a level of trust and then succeed in a mutual authentication using a scheme suitable for low-resource devices in smart environments. An innovation in our trust model is that it uses an accurate approach to calculate trust in different situations and includes a human-based feature for trust feedback, which is user rating. Finally, we tested and implemented our scheme on Android mobile phones in a smart environment dedicated for handicapped people.  相似文献   
3.
This article represents an analytical formulation for optical properties of absorbing metallic nanoparticles in visible region of electromagnetic spectrum based on Mie theory, in order to find a clear relationship between fundamental characteristics of nanoparticles with their spectral behavior and color coordinate in CIELAB color space. Calculations were performed on nanoparticles with various diameters (d = 50, 100, and 200 nm), as well as complex refractive index with different real (n = 1.5, 2.0, 2.5, and 3.0) and imaginary (k = 0.001 and 0.1) parts. Obtained results reveal that scattering phenomena in nanoparticles are strongly linked to the particle size parameter and complex index of refraction. The results indicate that the reflectance and lightness (L*) of nanoparticles increases as a result of increase in their size and real part of complex refractive index and decrease with increasing the imaginary part of complex refractive index. The CIELAB colorimetric system was used for analysis the color of nanoparticles. According to obtained results, all nanoparticles have greenish‐blue color, and undergo color change as a result of varying in their size and the complex refractive index. © 2015 Wiley Periodicals, Inc. Col Res Appl, 41, 477–483, 2016  相似文献   
4.
Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I–V curves is verified by experimental data.  相似文献   
5.
In this study, the effect of fluorine content on the mechanical properties of the novel poly (?-caprolactone)/nano-fluoridated hydroxyapatite nanocomposite scaffolds was investigated. Poly (?-caprolactone)/nano-fluoridated hydroxyapatite (PCL-FHA) scaffolds were produced by solvent casting/particulate leaching method. The fluoridated hydroxyapatite nanopowders had a chemical composition of Ca10(PO4)6OH2−xFx (where x values were selected equal to 0.5, 1, 1.5 and 2.0). Various weight percentages (10, 20, 30 and 40) of the FHA were added to the PCL. Sodium chloride (NaCl) particles having diameter of 300-500 μm were used as porogen. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were used to identify the phase structure and functional groups of obtained scaffolds. Mechanical properties of the prepared scaffolds were also determined. Results showed that the compressive strength of scaffolds increases with decreasing the weight percent of fluorine in FHA.  相似文献   
6.
The present investigation focuses on modifying the strength of single-lap adhesively bonded joints under tension–torsion loading with the use of three-dimensional finite element (FE) modeling. A single-lap adhesively bonded joint is reinforced by fibers and analyzed by means of ABAQUS-6.9.1 FE code. The adherends are considered to be made of orthotropic materials, while the adhesive is neat resin or reinforced by various types of fibers. The carbon and glass unidirectional fibers are used for adhesive reinforcement. In the FE modeling, the behavior of all the members is assumed to be linear elastic. The ultimate bond strength is increased as the fiber volume fraction in the adhesive is increased. By changing the properties and the behavior of the adhesive from neat resin (isotropic) to fiber composite adhesive (orthotropic) and with various fiber volume fractions and by changing the orientation of the fibers in the adhesive region with respect to the global axes, the bond strength in tension–torsion loadings are changed. Also, the excessive adhesive layer is modeled and its effect on the joint strength is investigated.  相似文献   
7.
As a piezoelectric polymer, poly (vinylidene fluoride) (PVDF) is attractive in energy conversion applications between electrical and mechanical forms because of its low cost, high flexibility, and biocompatibility. The piezoelectricity of electrospun PVDF polymer is due to changes in the crystalline structure (e.g., creating the β‐phase) during the electrospinning process. This research focuses on two approaches for investigation of β Phase formation: (1) addition of LiCl in different concentrations (0.001, 0.00133, 0.002, 0.004 wt%) as inorganic salt to the polymer solution, (2) increasing tension along the fiber axis by increasing the collector drum speed during the aligning process. Performances of these structures were evaluated by using X‐ray diffraction (XRD), Fourier Transform Infrared (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). A one‐step nano‐generator and cost‐effective package based on electrospun nanofibers was presented to measure output voltages as a performance factor. Results show that the addition of LiCl leads to β Phase formation in the crystalline structure, decreasing fiber diameter to 65 nm, and increment in the work of rupture and piezoelectric output. Moreover, the results show that increasing collector drum speed causes the alignment of β‐crystallites along the fiber axis and subsequently no considerable effect on the formation of β‐phases and output voltage. POLYM. ENG. SCI., 56:61–70, 2016. © 2015 Society of Plastics Engineers  相似文献   
8.
Chemical vapor deposition of poly(3‐methylthiophene) and poly (3‐hexylthiophene) as conductive polymers on the surface of polyester fabrics was successfully obtained. Fourier transform infrared spectroscopy confirmed the formation of polymers on surface of fabrics (the fingerprint of polythiophenes, υ 600–1500 cm?1). The uniformity of deposition and nanoparticles (average size of 60 nm) were proved with scanning electron microscopy. Electrochemical impedance spectroscopy showed that P3HT‐coated samples offer higher conductivity in compared to P3MT‐coated samples. The impedance modulus of P3HT‐coated samples was lowered nine times to that of row materials and reached to c8000 Ω. The samples have also shown electrochromic properties under electrical current, changing its color from yellowish green at 0 V to dark green at +12 V for poly (3‐hexylthiophene) samples and from brown at 0 V to red at +12 V for poly(3‐methylthiophene)‐coated fabrics (V = 0 V, λ = 450 nm; V = 12 V, λ = 650 nm). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40673.  相似文献   
9.
Microbial food safety process risk models are simplifications of the real world that help risk managers in their efforts to mitigate food safety risks. An important tool in these risk assessment endeavors is sensitivity analysis, a systematic method used to quantify the effect of changes in input variables on model outputs. In this study, a novel sensitivity analysis method called classification and regression trees was applied to safety risk assessment with the use of portions of the Slaughter Module and Preparation Module of the E. coli O157:H7 microbial food safety process risk as an example. Specifically, the classification and regression trees sensitivity analysis method was evaluated on the basis of its ability to address typical characteristics of microbial food safety process risk models such as nonlinearities, interaction, thresholds, and categorical inputs. Moreover, this method was evaluated with respect to identification of high exposure scenarios and corresponding key inputs and critical limits. The results from the classification and regression trees analysis applied to the Slaughter Module confirmed that the process of chilling carcasses is a critical control point. The method identified a cutoff value of a 2.2-log increase in the number of organisms during chilling as a critical value above which high levels of contamination would be expected. When classification and regression trees analysis was applied to the cooking effects part of the Preparation Module, cooking temperature was found to be the most sensitive input, with precooking treatment (i.e., raw product storage conditions) ranked second in importance. This case study demonstrates the capabilities of classification and regression trees analysis as an alternative to other statistically based sensitivity analysis methods, and one that can readily address specific characteristics that are common in microbial food safety process risk models.  相似文献   
10.
The use of electrospun nanofibres in applications such as medical products, fuel cells, photocatalysis, filtration, sensors and actuators is reviewed. Yarn production is classified into two types, namely hollow and core-shell structures; the methods used for producing the two structures for different polymers are discussed. Explanations are given for the various arrangements for producing nanofibre yarns and bundles in non-twisted or twisted forms to suit their end use. Natural and synthetic polymer products for biomedical uses and their applications in the form of polymer nanofibres are reviewed and polymeric optical fibres for use in photonic devices and optical circuits are evaluated. The production and development of nanofibrous filtration devices is explored with specific reference to water treatment and the control of air pollution. Particular attention is then given to the evaluation of different electrospinning methods for PVDF (polyvinylidene fluoride), a piezoelectric polymer widely used in sensor applications in terms of their ability to harvest more energy after agitation of the sensor and the effects of different additives on the piezoelectric properties of PVDF. Priorities for further research are then outlined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号