首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3766篇
  免费   254篇
  国内免费   8篇
电工技术   54篇
化学工业   985篇
金属工艺   73篇
机械仪表   138篇
建筑科学   119篇
矿业工程   11篇
能源动力   134篇
轻工业   595篇
水利工程   38篇
石油天然气   36篇
无线电   253篇
一般工业技术   595篇
冶金工业   450篇
原子能技术   28篇
自动化技术   519篇
  2024年   19篇
  2023年   46篇
  2022年   80篇
  2021年   161篇
  2020年   121篇
  2019年   152篇
  2018年   143篇
  2017年   146篇
  2016年   139篇
  2015年   103篇
  2014年   142篇
  2013年   336篇
  2012年   203篇
  2011年   219篇
  2010年   201篇
  2009年   209篇
  2008年   141篇
  2007年   135篇
  2006年   112篇
  2005年   86篇
  2004年   85篇
  2003年   68篇
  2002年   64篇
  2001年   49篇
  2000年   49篇
  1999年   40篇
  1998年   134篇
  1997年   111篇
  1996年   70篇
  1995年   43篇
  1994年   38篇
  1993年   50篇
  1992年   30篇
  1991年   17篇
  1990年   26篇
  1989年   24篇
  1988年   17篇
  1987年   16篇
  1986年   9篇
  1985年   14篇
  1984年   9篇
  1983年   16篇
  1982年   15篇
  1981年   16篇
  1980年   15篇
  1978年   8篇
  1977年   12篇
  1976年   19篇
  1974年   7篇
  1970年   7篇
排序方式: 共有4028条查询结果,搜索用时 15 毫秒
1.
2.
The incursion of microbial growth on polymeric products can deteriorate their performance and lead to the development of undesirable staining and odors. A growing trend in the industry has aimed to reduce microbial populations on high-touch surfaces via the use of antimicrobials to protect material aesthetics and durability or to prevent the spread of pathogenic microorganisms. In this study, a variety of plastic substrates (30 unique polymer compounds), including poly(acrylonitrile-co-butadiene-co-styrene), poly(butylene terephthalate), poly(etherimide), various thermoplastic elastomers (TPEs), poly(carbonates), and poly(amides), were screened for susceptibility to microbial attack using American Society for Testing and Materials (ASTM) G21 (fungi susceptibility), Japanese Industrial Standard (JIS) Z2801, and modified ASTM E1428-15a (bacterial susceptibility) test standards. TPEs were determined to be most susceptible to microbial attack under the appropriate environmental conditions. Subsequent studies assessed the use of an antimicrobial additive, zinc pyrithione (ZPT), for potential efficacy in a variety of TPE blends for diverse target market applications. ZPT proved to be very effective in protecting TPEs, reducing Staphylococcus aureus and Escherichia coli populations by 99.9% or more in JIS Z2801 testing and inhibiting fungal growth (rating = 0) according to the ASTM G21 standard.  相似文献   
3.
Bioactive glasses and glass-ceramics (GCs) effectively regenerate bone tissue, however most GCs show improved mechanical properties. In this work, we developed and tested a rarely studied bioactive glass composition (24.4K2O-26.9CaO-46.1SiO2-2.6P2O5 mol%, identified as 45S5-K) with different particle sizes and heating rates to obtain a sintered GC that combines good fracture strength, low elastic modulus, and bioactivity. We analyzed the influence of the sintering processing conditions in the elastic modulus, Vickers microhardness, density, and crystal phase formation in the GC. The best GC shows improved properties compared with its parent glass. This glass achieves a good densification degree with a two-step viscous flow sintering approach and the resulting GC shows as high bioactivity as that of the standard 45S5 Bioglass®. Furthermore, the GC elastic modulus (56 GPa) is relatively low, minimizing stress shielding. Therefore, we unveiled the glass sintering behavior with concurrent crystallization of this complex bioactive glass composition and developed a potential GC for bone regeneration.  相似文献   
4.
Alcohol-free beer with isotonic properties is getting more popular and its production can be carried out by different production strategies; however, interrupted fermentation is still a challenge. Therefore, the objective of this study was to develop a low-alcohol isotonic beer (<0.5% v/v) by interrupted fermentation. Moreover, the major objective is to compare the developed product to commercial beverages (sports drinks, ‘Pilsen' regular beer, alcohol-free beers and low-alcohol isotonic beer). The beverages were evaluated based on pH, alcohol content (% v/v), total titratable acidity (mEq L−1), osmolality (mOsmol kg−1), bitterness International Bitterness Units, colour European Brewery Convention, total phenolic compounds (mg L−1 gallic acid), reducing and total sugars (%) and Na and K contents (mg L−1). The developed low-alcohol isotonic beer presented characteristics similar to sports drinks, with the advantage of being richer in phenolic compounds and suitable osmolality. Despite salts were added in its formulation, the grades attributed to all beers employed in the sensory evaluation, as well as the purchase intention did not present significant differences.  相似文献   
5.
Pinhão seed is an unconventional source of starch and the pines grow up in native forests of southern Latin America. In this study, pinhão starch was adjusted at 15, 20 and 25% moisture content and heated to 100, 110 and 120 °C for 1 h. A decrease in λ max (starch/iodine complex) was observed as a result of increase in temperature and moisture content of HMT. The ratio of crystalline to amorphous phase in pinhão starch was determined via Fourier transform infra red by taking 1045/1022 band ratio. A decrease in crystallinity occurred as a result of HMT. Polarised light microscopy indicated a loss of birefringence of starch granules under 120 °C at 25% moisture content. Granule size distribution was further confirmed via scanning electron microscopy which showed the HMT effects. These results increased the understanding on molecular and structural properties of HMT pinhão starch and broadened its food and nonfood industrial applications.  相似文献   
6.
7.
In this work was investigated the effect of the addition of barium titanate (BaTiO3) on electrical properties of two chemically recyclable thermosets, polyhemiaminal (PHA) and polyhexahydro‐s‐triazine (PHT), both fabricated from 4,4′‐oxydianiline (ODA), an ether derivative of aniline and paraformaldehyde. Thermal and mechanical properties as well as chemical recyclability of the two polymers and their nanocomposites/nanodielectrics were also investigated. In addition, a quantitative analysis was conducted of the nanoparticle dispersion in the PHA‐/PHT‐based BaTiO3‐containing nanocomposites using transmission electron microscopy imaging and the nearest‐neighbor distance index and this index was used to analyze the investigated properties in connection with the proper mechanisms. Regarding the electrical properties for both neat polymers, conductivity values of the order of 10?8 S m?1 at 100 Hz were observed and dielectric constant values close to 2.80 for both polymers at 1 kHz. The addition of 0.5 wt% of BaTiO3 ferroelectric nanoparticles increased by about 44% the dielectric constant (1 kHz) and conductivity (102 Hz) of the PHA‐based nanocomposite. PHA and PHT exhibited glass transition temperature (Tg) values in the range 125–180 °C. An increase of 7 °C in Tg was observed after the incorporation of 0.5 wt% of BaTiO3 into PHA. Concerning the mechanical properties, values in the range 4.00–4.45 GPa for reduced modulus and 0.30–0.43 GPa for nanohardness for PHA and PHT polymers were observed. Independently of filler content or polymer matrix, both mechanical properties were enhanced after the addition of BaTiO3. The chemical recycling of PHA/PHT and all nanocomposites in the initial ODA reagent after sulfuric acid treatment was successfully characterized using the NMR and Fourier transform infrared spectroscopic techniques. © 2018 Society of Chemical Industry  相似文献   
8.
9.
Neat poly (lactic acid) (PLA) and PLA/cassava bagasse (CB) composites were used to produce seedling tubes by extrusion and injection molding. The tubes were buried in simulated soil, and their biodegradation was investigated by weight loss, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). After 180 days, the composites' biodegradation was higher than neat PLA material, and the higher the CB content, the higher the biodegradation, which caused fissures and voids in the material. The biodegradation of PLA/CB composites increased the phosphorus content in the soil after 180 days. Composites of PLA with CB, an abundant agro-industrial residue in Brazil, are promising because they can reduce the environmental impact due to CB's proper destination, and the composites' costs and biodegradation are faster than pure PLA material. Both the faster biodegradation of the tube and the higher P content are advantageous for seedling tubes.  相似文献   
10.
This study investigates the preparation of polyetherimide (PEI) – LaNi5 composites films for hydrogen storage. Prior to the polymer addition, LaNi5 was ball-milled at different conditions (250, 350, and 450 RPM) and annealed at 500 °C for 1 h under vacuum. The composites were produced with BM-LaNi5-350 (PEI/LaNi5-350) and annealed BM-LaNi5-350 (PEI/LaNi5-350-TT). Membranes were successfully produced through solvent casting assisted by an ultrasonic bath. The particles dispersion and the film morphology did not change after hydrogenation cycles. In the H2 sorption experiments at 43 °C and 20 bar, the films stored H2 without incubation time; both samples reached a capacity of ~0.6 wt%. The H2 sorption kinetics of PEI/LaNi5-350 was comparable to that of BM-LaNi5-350, whereas PEI/LaNi5-350-TT presented significantly slower kinetics. LaNi5 oxidation was hindered by PEI, showing that it can be explored to improve metal hydrides air resistance. The results demonstrated that PEI films filled with LaNi5 are promising materials for hydrogen storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号