首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
一般工业技术   5篇
自动化技术   1篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Insulator-based dielectrophoresis (iDEP) has been successfully used for on-chip manipulations of biological samples. Despite its effectiveness, iDEP typically requires high DC voltages to achieve sufficient electric field; this is mainly due to the coupled phenomena among linear electrokinetics: electroosmosis (EO) and electrophoresis (EP) and nonlinear electrokinetics: dielectrophoresis (DEP). This paper presents a microfluidic technique using DC-offset AC electric field for electrokinetic concentration of particles and cells by repulsive iDEP. This technique introduces AC electric field for producing iDEP which is decoupled from electroosmosis (EO) and electrophoresis (EP). The repulsive iDEP is generated in a PDMS tapered contraction channel that induces non-uniform electric field. The benefits of introducing AC electric field component are threefold: (i) it contributes to DEP force acting on particles, (ii) it suppresses EO flow and (iii) it does not cause any EP motion. As a result, the required DC field component that is mainly used to transport particles on the basis of EO and EP can be significantly reduced. Experimental results supported by numerical simulations showed that the total DC-offset AC electric field strength required to concentrate 15-μm particles is significantly reduced up to 85.9% as compared to using sole DC electric field. Parametric experimental studies showed that the higher buffer concentration, larger particle size and higher ratio of AC-to-DC electric field are favorable for particle concentration. In addition, the proposed technique was demonstrated for concentration of yeast cells.  相似文献   
2.
Craniofacial bone defects such as alveolar cleft affect the esthetics and functions that need bone reconstruction. The advanced techniques of biomaterials combined with stem cells have been a challenging role for maxillofacial surgeons and scientists. PCL-coated biphasic calcium phosphate (PCL-BCP) scaffolds were created with the modified melt stretching and multilayer deposition (mMSMD) technique and merged with human dental pulp stem cells (hDPSCs) to fulfill the component of tissue engineering for bone substitution. In the present study, the objective was to test the biocompatibility and biofunctionalities that included cell proliferation, cell viability, alkaline phosphatase activity, osteocalcin, alizarin red staining for mineralization, and histological analysis. The results showed that mMSMD PCL-BCP scaffolds were suitable for hDPSCs viability since the cells attached and spread onto the scaffold. Furthermore, the constructs of induced hDPSCs and scaffolds performed ALP activity and produced osteocalcin and mineralized nodules. The results indicated that mMSMD PCL-BCP scaffolds with hDPSCs showed promise in bone regeneration for treatment of osseous defects.  相似文献   
3.
This paper presents a poly(dimethyl siloxane) (PDMS) polymer microfluidic device using alternating current (ac) dielectrophoresis (DEP) for separating live cells from interfering particles of similar sizes by their polarizabilities under continuous flow and for characterizing DEP behaviors of cells in stagnant flow. The ac-DEP force is generated by three-dimensional (3D) conducting PDMS composite electrodes fabricated on a sidewall of the device main channel. Such 3D PDMS composite electrodes are made by dispersing microsized silver (Ag) fillers into PDMS gel. The sidewall AgPDMS electrodes can generate a 3D electric field that uniformly distributes throughout the channel height and varies along the channel lateral direction, thereby producing stronger lateral DEP effects over the entire channel. This allows not only easy observation of cell/particle lateral motion but also using the lateral DEP force for manipulation of cells/particles. The former feature is used to characterize the frequency-dependent DEP behaviors of Saccharomyces cerevisiae (yeast) and Escherichia coli (bacteria). The latter is utilized for continuous separation of live yeast and bacterial cells from similar-size latex particles as well as live yeast cells from dead yeast cells. The separation efficiency of 97% is achieved in all cases. The demonstration of these functions shows promising applications of the microfluidic device.  相似文献   
4.
The objective of the present study was to investigate the effect of a fabricated combination of poly-?-caprolactone (PCL)–biphasic calcium phosphate (BCP) with the modified melt stretching and multilayer deposition (mMSMD) technique on human dental pulp stem cell (hDPSC) differentiation to be osteogenic like cells for bone regeneration of calvarial defects in rabbit models. hDPSCs extracted from human third molars were seeded onto mMSMD PCL-BCP scaffolds and the osteogenic gene expression was tested prior to implantation in vivo. Two standardized 11?mm in diameter circular calvarial defects were created in 18 adult male New Zealand white rabbits. The rabbits were divided into 4 groups: (1) hDPSCs seeded in mMSMD PCL-BCP scaffolds; (2) mMSMD PCL-BCP scaffolds alone, (3) empty defects and (4) autogenous bone (n?=?3 site/time point/groups). After two, four and eight weeks after the operation, the specimens were harvested for micro-CT including histological and histomorphometric analysis. The explicit results presented an interesting view of the bioengineered constructs of hDPSCs in PCL-BCP scaffolds that increased the newly formed bone compared to the empty defect and scaffold alone groups. The results demonstrated that hDPSCs combined with mMSMD PCL-BCP scaffolds may be an augmentation material for bony defect.  相似文献   
5.
Journal of Materials Science - The objective of this study was to develop and characterize a novel combined systems of amphotericin B-loaded silk fibroin nanoparticles (AmB-FNPs) and in situ...  相似文献   
6.
A new silk fibroin-based nanoparticles (FNPs) have been successfully developed utilizing crosslinker EDC (EDC-FNPs) or cationic polymer poly(ethyleneimine) (PEI-FNPs). All developed crosslinked FNPs show a similar spherical particle size of ~?300 nm. Depending on the amount of EDC or the addition of PEI, the zeta potential could be controlled favorably and range from ??15 mV to +?30 mV. Particle structures and crystallinity index are determined and compared using different techniques; X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FT-IR), differential scanning calorimetry and nuclear magnetic resonance (NMR). The most reliable crystallinity calculation methods are based on FT-IR and NMR. The degree of fibroin crystallinity increases with increasing EDC content, whereas PEI reduces it. Exceptionally, XRD shows a reverse order of crystallinity due to the inability to detect short-range ordered structures. Proposed schematic particle structures match all experimental data. In conclusion, the crosslinked fibroin-based nanoparticle properties could be manipulated by using carbodiimide or PEI crosslinkers. In addition, both EDC-FNPs and PEI-FNPs showed high potential as a drug delivery system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号