首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
一般工业技术   3篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The study of the interfacial stress transfer for glass fibres in polymer composites through the fragmentation test requires certain assumptions, such as a constant interfacial shear stress. In order to map the local interfacial properties of a composite, both Raman spectroscopy and luminescence spectroscopy have been independently used. Unlike other polymer fibre composites, the local strain state of a glass fibre cannot be obtained using Raman spectroscopy, since only very broad and weak peaks are obtainable. This study shows that when single-walled carbon nanotubes (SWNTs) are added to the silane sizing as a strain sensor, it becomes possible to map the local fibre strain in glass fibres using Raman spectroscopy. Moreover, if this model glass fibre contains a small amount of Sm2O3, as one of the components, luminescence spectroscopy can be simultaneously used to confirm this local fibre strain. A combined micromechanical properties study of stress transfer at the fibre–matrix interface using luminescence spectroscopy, together with Raman spectroscopy, is therefore reported. The local strain behaviour of both Sm3+ doped glass and SWNTs in the silane coating are shown to be consistent with a shear-lag model. This indicates that Sm3+ dopants and SWNTs are excellent sensors for the local deformation of glass fibre composites.  相似文献   
2.
The preparation of a model glass-fibre/epoxy composite with single-walled carbon nanotubes (SWNTs) incorporated as a strain sensor on the fibre surface is described. A micromechanical study of stress transfer at the fibre–matrix interface followed using Raman spectroscopy properties is reported. The SWNTs were distributed along the fibre surface either by dispersing them in an amino-silane coupling agent or coating with an epoxy resin solution containing the SWNTs. The point-by-point mapping of the fibre strain in single fibre fragmentation tests has been undertaken for the first time using SWNTs on the fibres and the interfacial shear stress distribution along the fibre length was determined using the embedded SWNTs. The behaviour was found to be consistent with the classical shear-lag model. The effects of SWNT type and preparation procedure on the sensitivity of the technique were evaluated and optimized from single fibre deformation tests.  相似文献   
3.
As a consequence of an increasing demand in sustainable development for business organizations, the evaluation of corporate sustainability has become a topic intensively focused by academic researchers and business practitioners. Several techniques in the context of multiple criteria decision analysis (MCDA) have been suggested to facilitate the evaluation and the analysis of sustainability performance. However, due to the complexity of evaluation, such as a compilation of quantitative and qualitative measures, interrelationships among various sustainability criteria, the assessor’s hesitation in scoring, or incomplete information, simple techniques may not be able to generate reliable results which can reflect the overall sustainability performance of a company. This paper proposes a series of mathematical formulations based upon the evidential reasoning (ER) approach which can be used to aggregate results from qualitative judgments with quantitative measurements under various types of complex and uncertain situations. The evaluation of corporate sustainability through the ER model is demonstrated using actual data generated from three sugar manufacturing companies in Thailand. The proposed model facilitates managers in analysing the performance and identifying improvement plans and goals. It also simplifies decision making related to sustainable development initiatives. The model can be generalized to a wider area of performance assessment, as well as to any cases of multiple criteria analysis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号