首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   12篇
  国内免费   5篇
电工技术   8篇
化学工业   112篇
金属工艺   11篇
机械仪表   6篇
建筑科学   8篇
能源动力   24篇
轻工业   9篇
水利工程   3篇
无线电   43篇
一般工业技术   107篇
冶金工业   19篇
原子能技术   6篇
自动化技术   53篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   11篇
  2019年   9篇
  2018年   21篇
  2017年   17篇
  2016年   11篇
  2015年   11篇
  2014年   14篇
  2013年   32篇
  2012年   18篇
  2011年   29篇
  2010年   23篇
  2009年   20篇
  2008年   25篇
  2007年   21篇
  2006年   17篇
  2005年   13篇
  2004年   9篇
  2003年   12篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   9篇
  1996年   17篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1986年   3篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1970年   1篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
1.
Magnesium (Mg)-based nanocomposites owing to their low density and biocompatibility are being targeted for transportation and biomedical sectors. In order to support a sustainable environment, the prime aim of this study was to develop non-toxic magnesium-based nanocomposites for a wide spectrum of applications. To support this objective, cerium oxide nanoparticles (0.5?vol%, 1?vol%, and 1.5?vol%) reinforced Mg composites are developed in this study using blend-press-sinter powder metallurgy technique. The microstructural studies exhibited limited amounts of porosity in Mg and Mg-CeO2 samples (< 1%). Increasing presence of CeO2 nanoparticles (up to 1.5?vol%) led to a progressive increase in microhardness, dimensional stability, damping capacity and ignition resistance of magnesium. The compressive strengths increased with the increasing addition of the nanoparticles with a significant enhancement in the fracture strain (up to ~48%). Superior energy absorption was observed for all the composite samples prior to compressive fracture. Further, enhancement in thermal, mechanical and damping characteristics of pure Mg is correlated with microstructural changes due to the presence of the CeO2 nanoparticles.  相似文献   
2.
We cross-sectionally examined the relationship between age, optic disc area, refraction, and gender and optic disc topography and retinal nerve fiber layer (RNFL) measurements, using optical imaging techniques. One eye from each of 155 Caucasian subjects (age range 23.0-80.8 y) without ocular pathology was included. Measurements were obtained by using the Heidelberg Retina Tomography (HRT), the GDx Nerve Fiber Analyzer, and the Optical Coherence Tomograph (OCT). The effects of age were small (R2 < 17%) and were limited to specific HRT, GDx, and OCT parameters. Disc area was significantly associated with most HRT parameters and isolated GDx and OCT parameters. Refraction and gender were not significantly associated with any optic disc or RNFL parameters. Although effects of age on the optic disc and RNFL are small, they should be considered in monitoring ocular disease. Optic disc area should be considered when cross-sectionally evaluating disc topography and, to a lesser extent, RNFL thickness.  相似文献   
3.
Stereological measurements were performed to characterize the indentation crack path in a cubic zirconia-10 vol% alumina (c-ZrO2-10 vol% Al2O3) composite. Cracks were generated using Vickers indentation, and the crack propagation behavior was characterized as a function of the indentation loading/unloading rates. Cracks that were produced by Vickers indentation formed at higher crack velocities as the loading/unloading rates increased. The amount of contact between the crack and the Al2O3 particles increased as the indentation rate decreased. The total number of crack-particle interactions per unit crack length also increased as the indentation rate decreased, because of an increase in the number of particles that were fractured per unit crack length, whereas the number of particles that were debonded remained relatively constant as the indentation rate changed. These results suggest that residual thermal mismatch stresses have predominant control of the crack path at lower crack velocities (low indentation loading/unloading rate), whereas elastic mismatch stresses predominate at higher crack velocities (high indentation loading/unloading rate).  相似文献   
4.
High-temperature molding of Brabender-mixed blend of polyacrylic acid (PAA) and epoxidized natural rubber (ENR) causes thermally induced crosslinking between PAA and ENR. Studies on Monsanto rheometry of the blend and physical properties, solvent swelling, and dynamic mechanical properties of the molded blend show that both mixer rotor speed and carbon black filler influence the crosslinking between the component polymers. For example, the extent of crosslinking for the 50–50 PAA–ENR blend was found maximum when the component polymers were mixed at 40 rpm, but the same blend filled with 30 phr HAF carbon black filler showed maximum crosslinking when mixing was carried out at 120 rpm. The results have been explained on the basis of formation of network on the filler surface, which in turn depends on two competing factors: increase in bound rubber formation with increase in filler loading at a fixed rotor speed and enhanced degradation of ENR at higher mixer rotor speed at a fixed filler loading. © 1994 John Wiley & Sons, Inc.  相似文献   
5.
Different materials have different coefficients of thermal expansion, which is a measure of the change in length for a given change in temperature. When different materials are combined structurally, as in a bonded joint, a temperature change leads to stresses being set up. These stresses are present even in an unloaded joint which has been cured at say 150°C and cooled to room temperature. Further stresses result from operations at even lower temperatures.

In addition to temperature-induced stresses, account also has to be taken of changes in adhesive properties. Low temperatures cause the adhesive to become more brittle (reduced strain to failure), while high temperatures cause the adhesive to become more ductile, but make it less strong and more liable to creep.

Theoretical predictions are made of the strength of a series of aluminium/CFRP joints using three different adhesives at 20°C and 55°C. Various failure criteria are used to show good correlation with experimental results.  相似文献   
6.
High-throughput drilling of titanium alloys   总被引:3,自引:1,他引:3  
Experiments of high-throughput drilling of Ti–6Al–4V at 183 m/min cutting speed and 156 mm3/s material removal rate (MRR) using a 4 mm diameter WC–Co spiral point drill were conducted. The tool material and geometry and drilling process parameters, including cutting speed, feed, and fluid supply, were studied to evaluate the effect on drill life, thrust force, torque, energy, and burr formation. The tool wear mechanism, hole surface roughness, and chip light emission and morphology for high-throughput drilling were investigated. Supplying the cutting fluid via through-the-drill holes has proven to be a critical factor for drill life, which can be increased by 10 times compared to that of dry drilling at 183 m/min cutting speed and 0.051 mm/rev feed. Under the same MRR of 156 mm3/s with a doubled feed of 0.102 mm/rev (91 m/min cutting speed), over 200 holes can be drilled. The balance of cutting speed and feed is essential to achieve long drill life and good hole surface roughness. This study demonstrates that, using proper drilling process parameters, spiral point drill geometry, and fine-grained WC–Co tool material, the high-throughput drilling of Ti alloy is technically feasible.  相似文献   
7.
In this paper we present a new character animation technique in which the animation adapts itself based on the change in the user’s perspective, so that when the user moves and their point of viewing the animation changes, then the character animation adapts itself in response to that change. The resulting animation, generated in real-time, is a blend of key animations provided a priori by the animator. The blending is done with the help of efficient dual-quaternion transformation blending. The user’s point of view is tracked using either computer vision techniques or a simple user-controlled input modality, such as mouse-based input. This tracked point of view is then used to suitably select the blend of animations. We show a way to author and use such animations in both virtual as well as augmented reality scenarios and demonstrate that it significantly heightens the sense of presence for the users when they interact with such self adaptive animations of virtual characters.  相似文献   
8.
Complex reflectance phenomena such as specular reflections confound many vision problems since they produce image ‘features’ that do not correspond directly to intrinsic surface properties such as shape and spectral reflectance. A common approach to mitigate these effects is to explore functions of an image that are invariant to these photometric events. In this paper we describe a class of such invariants that result from exploiting color information in images of dichromatic surfaces. These invariants are derived from illuminant-dependent ‘subspaces’ of RGB color space, and they enable the application of Lambertian-based vision techniques to a broad class of specular, non-Lambertian scenes. Using implementations of recent algorithms taken from the literature, we demonstrate the practical utility of these invariants for a wide variety of applications, including stereo, shape from shading, photometric stereo, material-based segmentation, and motion estimation.  相似文献   
9.
One of the simplest ways to generate electric power from waste heat is thermoelectric (TE) energy conversion. So far, most of the research on thermoelectrics has focused on inorganic bulk TE materials and their device applications. However, high production costs per power output and limited shape conformity hinder applications of state-of-the-art thermoelectric devices (TEDs). In recent years, printed thermoelectrics has emerged as an exciting pathway for their potential in the production of low-cost shape-conformable TEDs. Although several inorganic bulk TE materials with high performance are successfully developed, achieving high performance in inorganic-based printed TE materials is still a challenge. Nevertheless, significant progress has been made in printed thermoelectrics in recent years. In this review article, it is started with an introduction signifying the importance of printed thermoelectrics followed by a discussion of theoretical concepts of thermoelectricity, from fundamental transport phenomena to device efficiency. Afterward, the general process of inorganic TE ink formulation is summarized, and the current development of the inorganic and hybrid inks with the mention of their TE properties and their influencing factors is elaborated. In the end, TEDs with different architecture and geometries are highlighted by documenting their performance and fabrication techniques.  相似文献   
10.
In this paper, we propose a software defect prediction model learning problem (SDPMLP) where a classification model selects appropriate relevant inputs, from a set of all available inputs, and learns the classification function. We show that the SDPMLP is a combinatorial optimization problem with factorial complexity, and propose two hybrid exhaustive search and probabilistic neural network (PNN), and simulated annealing (SA) and PNN procedures to solve it. For small size SDPMLP, exhaustive search PNN works well and provides an (all) optimal solution(s). However, for large size SDPMLP, the use of exhaustive search PNN approach is not pragmatic and only the SA–PNN allows us to solve the SDPMLP in a practical time limit. We compare the performance of our hybrid approaches with traditional classification algorithms and find that our hybrid approaches perform better than traditional classification algorithms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号