首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   4篇
一般工业技术   1篇
  2022年   2篇
  2021年   3篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.

In this study, poly(L-lactic acid) (PLA)/low molar mass alkali lignin (aL) (1%, 5% and 10% w/w) composites were prepared primarily for a comprehensive understanding of the effect of aL on their antimicrobial properties, biocompatibility and cytotoxic behavior. The properties were evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetry and X-ray diffraction. The mechanical, water vapor barrier properties and photodegradability were analyzed as well. The results showed a significant inhibiting effect of aL on the crystallization behavior of PLA, increased water barrier properties (up to 73%) and photodegradability. PLA/aL composites showed a tenfold reduction in Gram-positive bacteria viability, very good cellular response and very low cytotoxicity levels, thus validating these materials as non-cytotoxic and with high potential to be used as food packaging.

Graphical abstract
  相似文献   
2.
The prevalence of type 2 diabetes mellitus (T2D) is alarmingly increasing worldwide, urgently calling for a better understanding of the underlying mechanisms in order to step up prevention and improve therapeutic approaches. It is becoming evident that the gut microbiota seem to have an endless capacity to impact T2D. In this study, we profile the gut microbiome patterns in T2D patients from Romania, by using quantitative Real-Time PCR and next generation sequencing. We enrolled a total of 150 individuals (105 T2D patients, 50 of them without metformin treatment and 45 healthy volunteers). The levels of potentially beneficial butyrate-producing bacteria were significantly reduced, while potentially pathogenic microorganisms such as Enterobacteriaceae and Fusobacterium were enriched in T2D patients. We evaluated the correlation between clinical parameters and gut microbiota and identified the genera Bacteroides, Alistipes, Dialister, Bilophila and Sutterella as possible detrimental factors in T2D. Our findings suggest that the gut microbiota may be a potential target in novel approaches to halt the development of T2D-associated complications.  相似文献   
3.
Gleditsia triacanthos is an aggressive invasive species in Eastern Europe, producing a significant number of pods that could represent an inexhaustible resource of raw material for various applications. The aim of this study was to extract cellulose from the Gleditsia triacanthos pods, characterize it by spectrophotometric and UHPLC–DAD-ESI/MS analysis, and use it to fabricate a wound dressing that is multi-functionalized with phenolic compounds extracted from the leaves of the same species. The obtained cellulose microfibers (CM) were functionalized, lyophilized, and characterized by ATR-FTIR and SEM. The water absorption and retention capacity as well as the controlled release of phenolic compounds with antioxidant properties evaluated in temporal dynamics were also determined. The antimicrobial activity against reference and clinical multi-drug-resistant Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae, Candida albicans, and Candida parapsilosis strains occurred immediately after the contact with the tested materials and was maintained for 24 h for all tested microbial strains. In conclusion, the multi-functionalized cellulose microfibers (MFCM) obtained from the reproductive organs of an invasive species can represent a promising alternative for the development of functional wound dressings with antioxidant and antimicrobial activity, as well as being a scalable example for designing cost-effective, circular bio-economy approaches to combat the accelerated spread of invasive species.  相似文献   
4.
Globally, we are facing a worrying increase in type 1 diabetes mellitus (T1DM) incidence, with onset at younger age shedding light on the need to better understand the mechanisms of disease and step-up prevention. Given its implication in immune system development and regulation of metabolism, there is no surprise that the gut microbiota is a possible culprit behind T1DM pathogenesis. Additionally, microbiota manipulation by probiotics, prebiotics, dietary factors and microbiota transplantation can all modulate early host–microbiota interactions by enabling beneficial microbes with protective potential for individuals with T1DM or at high risk of developing T1DM. In this review, we discuss the challenges and perspectives of translating microbiome data into clinical practice. Nevertheless, this progress will only be possible if we focus our interest on developing numerous longitudinal, multicenter, interventional and double-blind randomized clinical trials to confirm their efficacy and safety of these therapeutic approaches.  相似文献   
5.
Metabolic syndrome (MetSyn) is a major health problem affecting approximately 25% of the worldwide population. Since the gut microbiota is highly connected to the host metabolism, several recent studies have emerged to characterize the role of the microbiome in MetSyn development and progression. To this end, our study aimed to identify the microbiome patterns which distinguish MetSyn from type 2 diabetes mellitus (T2DM). We performed 16S rRNA amplicon sequencing on a cohort of 70 individuals among which 40 were MetSyn patients. The microbiome of MetSyn patients was characterised by reduced diversity, loss of butyrate producers (Subdoligranulum, Butyricicoccus, Faecalibacterium prausnitzii) and enrichment in the relative abundance of fungal populations. We also show a link between the gut microbiome and lipid metabolism in MetSyn. Specifically, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) display a positive effect on gut microbial diversity. When interrogating the signature of gut microbiota in a subgroup of patients harbouring both MetSyn and T2DM conditions, we observed a significant increase in taxa such as Bacteroides, Clostridiales, and Erysipelotrichaceae. This preliminary study shows for the first time that T2DM brings unique signatures of gut microbiota in MetSyn patients. We also highlight the impact of metformin treatment on the gut microbiota. Metformin administration was linked to changes in Prevotellaceae, Rickenellaceae, and Clostridiales. Further research focusing on the microbiome-metabolome patterns is needed to clarify the exact association of various gut microbial communities with the progression of T2DM and the occurrence of various complications in MetSyn patients.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号