首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
一般工业技术   1篇
  2010年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
A large dairy farm located on the island of Oahu, Hawaii was the site for an investigation for the potential integration of the existing facultative lagoon system with a cost effective pretreatment unit process. Based on the results from a laboratory study, a pilot plant was installed with two anaerobic bioreactors (10 m3 each) and one aerobic reactor (3.8 m3). Two layers of media “Bio-nest,” providing a void volume of 98%, were placed into each anaerobic bioreactor with 19% space-based on the bioreactor water volume. For better performance and reduction of shock-load, the equalization/settling tank was employed prior to the first anaerobic Bio-nest reactor. The intermediate holding tank settled effluent suspended solids from the Bio-nest reactor and adjusted the loading rate in order to improve the performance of the aerobic EMMC (entrapped mixed microbial cell) bioreactors. Based on the start-up operation of the Bio-nest system at an organic loading rate of about 1.5 g TCOD/l/day, the production rate of biogas from the first and second Bio-nest reactors was 0.64 and 0.15 l/l/day, respectively. This indicates that the anaerobic degradation of organics occurs mainly in the first Bio-nest reactor due to the low loading rate. The removal efficiency from the Bio-nest system shows TCOD removal of about 70%. The EMMC process provided further treatment to achieve a removal efficiency of TCOD at about 50% and a TN of about 35%. The cost for these pretreatments in order to be integrated with the existing lagoon system is US $1.1 per 1,000 gallons (3.8 m3) for dairy wastewater and $1.1 per 1,000 gallons (3.8 m3) for dairy wastewater and 91 for each ton of TCOD removal. This integration system provides a sustainable improvement of environment and agricultural production.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号