首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   6篇
  国内免费   1篇
化学工业   16篇
金属工艺   8篇
机械仪表   13篇
建筑科学   6篇
能源动力   4篇
轻工业   23篇
无线电   7篇
一般工业技术   48篇
冶金工业   10篇
原子能技术   1篇
自动化技术   30篇
  2022年   5篇
  2021年   2篇
  2020年   8篇
  2019年   4篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   6篇
  2014年   12篇
  2013年   15篇
  2012年   17篇
  2011年   11篇
  2010年   13篇
  2009年   12篇
  2008年   5篇
  2007年   5篇
  2006年   13篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
1.
Multimedia Tools and Applications - Text recognition in the wild is a challenging task in the field of computer vision and machine learning. Existing optical character recognition engines cannot...  相似文献   
2.
The influence of processing conditions and interfacial modification on the morphology evolution and the composition range within which fully co‐continuous high density polyethylene/polystyrene blend structures can exist during blending in a single screw extruder was studied. Blends ranging from pure A to pure B component, with and without compatibilizer, were prepared under two different shear rates. It was found that high shear rates displaced the breakdown–coalescence balance of the dispersed nodules to the side of coalescence, narrowing the percolation domain and the critical composition for full co‐continuity decreased with increasing shear rates. The addition of a tri‐block compatibilizer induced the percolation threshold of the polystyrene phase to begin at lower percentages of polyethylene but the phase inversion point did not change. The experimental results are discussed in the light of various theoretical models. Copyright © 2005 Society of Chemical Industry  相似文献   
3.
Crushed tire rubber particles (CR) have been dispersed into a recycled poly(carbonate) matrix (rPC) to obtain an eco‐friendly plastic (EFP). A positive synergy was expected from the association of an elastomeric phase to a tough thermoplastic matrix, helping on the other hand to develop a plastic with low impact on the environment. Mechanical melt‐mixing alone cannot provide a suitable interface, and led to blends with poor mechanical properties. Consequently, we have investigated different strategies to improve the EFP properties: First, the rubber surface has been treated by flaming or washing with dichloromethane and second, two copolymers, poly(ethylene‐co‐ethyl acrylate‐tert‐hydroxyl methacrylate) (E‐EA‐MAH) and poly(ethylene‐co‐methyl acrylate‐ter‐glycidyl methacrylate) (E‐MA‐GMA), were used to compatibilize CR particles with rPC matrix by reactive melt‐mixing in an internal mixer. The resulting blends mechanical properties were studied through static tension experiments and interpreted to the light of electronic microscopy fractography analysis and nanoindentation experiments. Significant gain of mechanical properties can be obtained by decreasing CR size under 140 μm (especially for CR contents between 5 and 20% m/m). To reach similar properties with rubber particles of diameter over 140 μm (but under 350 μm), it is necessary to activate their surface by either dichloromethane washing or flaming. Additional use of a compatibilizer extends the plastic behaviour domain of the EFP. rPC‐20% w/w CR is the best alternative material of our study. POLYM. ENG. SCI., 47:1768–1776, 2007. © 2007 Society of Plastics Engineers  相似文献   
4.
We present a primal–dual augmented Lagrangian method to solve an equality constrained minimization problem. This is a Newton-like method applied to a perturbation of the optimality system that follows from a reformulation of the initial problem by introducing an augmented Lagrangian function. An important aspect of this approach is that, by a choice of suitable updating rules of parameters, the algorithm reduces to a regularized Newton method applied to a sequence of optimality systems. The global convergence is proved under mild assumptions. An asymptotic analysis is also presented and quadratic convergence is proved under standard regularity assumptions. Some numerical results show that the method is very efficient and robust.  相似文献   
5.
This paper presents a theoretical model to simulate the behaviour of RC beams strengthened with multilayered CFRP matrix allowing for inter-layer slip. An element of the composite beam is assumed to be subjected to a system of forces that satisfy equilibrium and compatibility of deformations. The inter-layer slip is allowed for by relating the differential strain at the interfaces between the CFRP layers and the concrete to the longitudinal shear flow at the corresponding interface through the shear stiffness of the adhesive layer. The basic differential equations are derived in terms of displacement variables and solved numerically using finite differences. The results of the numerical simulation included slip values along the interfaces, maximum slip values, stresses and strains and deflections. The results compare reasonably well with experimental findings.  相似文献   
6.
The failure mechanisms of reinforced concrete (RC) members change due to the application of externally bonded fiber-reinforced polymer reinforcement. Although an extensive literature is available describing the failure mechanisms of poststrengthened flexural systems, brittle failure modes caused by bond failure, such as midspan debonding and end peeling, need to be further investigated in order to identify and quantify the fracture processes that result in bond failure. Simplified experimental tests have been designed to idealize the bond between the laminate and the RC member. However, it is unclear how the simplified test results can be related to the actual flexural debonding failures. This paper investigates and compares two bond failure tests: a simplified test (or simple shear test) and a recently proposed shear/normal test. After discussing the characteristics of both tests and how they relate to the midspan debonding and end peeling failures, the shear/normal test is studied in more detail using a nonlinear finite-element fracture mechanics program. The program accounts for cohesive localized and distributed concrete crack damage and is capable of describing the geometrical discontinuities that induce different brittle failure mechanisms. The numerical results compare well with available experimental data and help explain the crack formation and propagation pattern up to specimen failure. Parametric studies are presented to elucidate the influence of different material parameters on the failure mechanisms.  相似文献   
7.
Epoxy has been widely used as adhesives in retrofitting structures with carbon fiber reinforced polymer (CFRP). In this study, different weight fractions of multi-walled carbon nanotubes (MWCNTs) and Silicon Carbide nanopowder (SiC) will be dispersed into epoxy to produce toughened adhesives that can effectively improve the CFRP/structure bonding performance. The preliminary experimental results indicate that adding 2 wt.% MWCNTs into Araldite-420 will increase its ultimate strength by 17% and its elastic modulus by 14%. On the other hand, Araldite-420’s elastic modulus will increase by nearly 50% when 1.0 wt.% of SiC powder is added. Ultrasonic mixing may increase the elastic modulus of Sikadur-30 but reduce its strength and ductility regardless of the amount of nanoparticles dispersed. No significant effect of nano-particle infusion on the glass transition temperature of the epoxies was found. The mechanism of nanoparticles infusion effects on the mechanical properties of the epoxies is also examined using SEM.  相似文献   
8.
9.
This paper deals with the elaboration of a stable suspension of TiO2 nanoparticles and their incorporation by electrophoretic deposition into pores of an anodized 5754 aluminum alloy. The as-synthesized TiO2 nanopowder was characterized by the X-ray diffraction, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy and IR spectroscopy. During this work, both the transmission electron microscopy and particle analysis showed that the resulting particles had a narrow size distribution with a crystallite size of about 15 nm. The zeta potential and stability of TiO2 nanoparticles dispersed with poly(acrylic acid) in an aqueous solution were also measured. A porous anodic film was synthesized in the phosphoric acid-base electrolyte and then filled by 15 nm TiO2 particles via electrophoresis. In addition, the effect of poly(acrylic acid) and pH on the suspension stability has been investigated. It was also demonstrated that by adding glycine in buffered suspension gelating phenomenon can be avoided that inhibits the insertion of nanoparticles inside the pores of an anodic film. It was also noted that an applied electric field greatly influences the electrophoretic deposition process. The field emission gun-scanning electron microscopy observations showed that larger (125 nm in diameter) and linear (6 μm in length) pores are successfully filled in 5 min.  相似文献   
10.
The epoxy resin used as the bonding agent in carbon fiber-reinforced polymer (CFRP) strengthening systems was modified by the infusion of multiwalled carbon nanotubes (MWCNTs). Two types of surfactants, Triton X-100 and C12E8, were used to disperse the nanotubes in the epoxy resin employing ultrasonic mixing. Dynamic mechanical analysis and tensile tests were conducted to study the effect of the surfactant-assisted dispersion of nanotubes on the thermal and mechanical properties of epoxy composites. The morphology of the epoxy composites was interpreted using scanning electron microscopy (SEM). Moreover, the effect of surfactant treatment on the structure of nanotubes was investigated by Fourier transform infrared (FT-IR). Based on the experimental results, the tensile strength and the storage modulus of the epoxy resin were increased by 32% and 26%, respectively, by the addition of MWCNTs. This was attributed to the homogeneous dispersion of nanotubes in the epoxy resin according to the SEM images. Another reason for the enhancement in the tensile properties was the reinforced nanotube/epoxy interaction as a result of the surfactant anchoring effect which was proved by FT-IR. A moderate improvement in the glass transition temperature (T g) was recorded for the composite fabricated using Triton X-100, which was due to the restricted molecular motions in the epoxy matrix. To characterize the temperature-dependent tensile behavior of the modified epoxy composites, tensile tests were conducted at elevated temperatures. It was revealed that the MWCNT modification using surfactant substantially improves the tensile performance of the epoxy adhesive at temperatures above the T g of the neat epoxy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号