首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   3篇
化学工业   10篇
金属工艺   3篇
机械仪表   3篇
建筑科学   1篇
矿业工程   1篇
能源动力   1篇
轻工业   1篇
水利工程   2篇
无线电   2篇
一般工业技术   4篇
冶金工业   1篇
自动化技术   4篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  1987年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Certificateless cryptography addresses the private key escrow problem in identity-based systems, while overcoming the costly issues in traditional public key cryptography. Undeniable signature schemes were proposed with the aim of limiting the public verifiability of ordinary digital signatures. The first certificateless undeniable signature scheme was put forth by Duan. The proposed scheme can be considered as the certificateless version of the identity-based undeniable signature scheme which was introduced by Libert and Quisquater. In this paper, we propose a new scheme which is much more efficient comparing to Duan's scheme. Our scheme requires only one pairing evaluation for signature generation and provides more efficient confirmation and disavowal protocols for both the signer and the verifier. We also prove the security of our scheme in the strong security model based on the intractability of some well-known pairing-based assumptions in the random oracle model.  相似文献   
2.
This work is a companion to a previous article, Part I, published in The Canadian Journal of Chemical Engineering, dealing with CO2 absorption in aqueous solutions containing a single aminic reagent (specifically methyldiethanolamine (MDEA) or piperazine (PZ)). In this second part, different PZ/MDEA mixtures are experimentally studied and their performances are compared with that of the single reagents. It is indeed well known that small quantities of PZ added to MDEA aqueous solutions are sufficient to obtain a significant improvement in the kinetics of the process. PZ is considered an activator or promoter for MDEA, but the mechanism of this synergy has still not been clearly demonstrated. The aim of this study is an attempt to understand how PZ and MDEA can interact by experimentally analyzing this beneficial mutual effect and by explaining it with the help of a suitable yet not complex model. We believe that the involved chemistry is not more complex than that reported in Part I for the single reagents. According to our findings, it is MDEA that enhances the action of PZ, as opposed to what many authors claim. Moreover, our results seem to rule out the existence of any PZ shuttle effect.  相似文献   
3.
It is a common perception that layered materials are soft in the interlayer direction. Herein, we present results of first-principles calculations of the structure and elastic constants of a class for hydrated oxides, tobermorite, and jennite, which illustrate that this is not the case, if (1) the interlayer distance is such that coulombic interlayer interactions become comparable to the iono-covalent intralayer interactions and (2) the existence of interlayer ions and water molecules do not shield the coulombic interlayer interactions. In this case, the mechanically softest directions are two inclined regions that form a hinge mechanism. The investigated class of materials and results are relevant to chemically complex hydrated oxides such as layered calcium–silicate–hydrates (C–S–H), the binding phase of all concrete materials, and the principle source of their strength and stiffness. In addition, the first-principles results may serve as a benchmark for validating empirical force fields required for the analysis of complex calcio–silicate oxides.  相似文献   
4.
In this paper, a time domain analysis based on the resolutions of integral equations by the method of moments, is applied to the study of microstrip antennas. At first, the theory will be recalled with the different methods of calculation of antennas characteristics: input impedance, radiation pattern, as well as given approximations. Then, results will be presented and compared to those obtained with frequency methods.  相似文献   
5.
Our study focuses on understanding the damage tolerance and performance reliability of WC-CoCr coatings. In this paper, the formation of HVOF-sprayed tungsten carbide-based cermet coatings is studied through an integrated strategy: First-order process maps are created by using online-diagnostics to assess particle states in relation to process conditions. Coating properties such as hardness, wear resistance, elastic modulus, residual stress, and fracture toughness are discussed with a goal to establish a linkage between properties and particle characteristics via second-order process maps. A strong influence of particle state on the mechanical properties, wear resistance, and residual stress stage of the coating was observed. Within the used processing window (particle temperature ranged from 1687 to 1831 °C and particle velocity from 577 to 621 m/s), the coating hardness varied from 1021 to 1507 HV and modulus from 257 to 322 GPa. The variation in coating mechanical state is suggested to relate to the microstructural changes arising from carbide dissolution, which affects the properties of the matrix and, on the other hand, cohesive properties of the lamella. The complete tracking of the coating particle state and its linking to mechanical properties and residual stresses enables coating design with desired properties.  相似文献   
6.
Despite the myriad of research efforts on exploiting fly ash as an alternative binder, its current role in industry is largely restricted to the supplementary use, which enables only partial replacement of conventional portland cement. Herein, we propose an unprecedented binder composite with the promising early-age strength, which is cost-effective and reduces the CO2 footprint compared with portland cement. The major constituent is fly ash occupying 76.4%-80.3% by the total mass of the constituents, while calcium oxide, nanosilica, and the minimum amounts of sodium-based activators are added to induce the early-age strength development. Optimization of the composition via the Taguchi design of experiments produced the early (7-day) compressive strength of 16.18 MPa. This value is encouraging considering that it is comparable to that of conventional portland cement and that a cementless composition with the minimum amounts of sodium-based activators was employed. The extensive materials analysis demonstrates that the starting Ca/Na molar ratio and the amount of nanosilica play instrumental roles in strength development by influencing the formation of key reaction products, which include the sodium-substituted AFm phase (the U-phase), katoite and portlandite. Overall, the promising early-age strength coupled with the significantly decreased amount of sodium-based chemicals and the reduced CO2 footprint will lay a foundation for development of low-cost, environmentally friendly binder in diverse industries.  相似文献   
7.
This work develops a new analytical solution for the reactive flow of aqueous nanofluid into porous media originally saturated with a mobile aqueous suspension containing fine particles and a mobile oleic-phase. The enhancement of nanoparticles on fines attachment onto rock grains is modeled through the increase of the maximum retention capacity of rock grains. Implementing the splitting technique and stream-function converts the original 3 × 3 system of partial-differential equations into 2 × 2 sub-system of nanoparticles-fines reactive transport, and a lifting equation where only phase saturation appears. Then, method of characteristics is applied to achieve the analytical solution, the validity of which is tested by numerical simulation. The historical profiles of suspended/adsorbed nanoparticles, suspended/attached fines, and phase saturation along 1-D porous medium are reproduced. The impact of injected nanoparticles concentration and carrier fluid saturation on fines attachment is investigated. This work provides a simple-yet-rigorous approach to evaluate nanofluid injection to control fines migration in multiphase flow.  相似文献   
8.
Hydrogen is an ideal synthetic fuel because it is lightweight, abundant and its oxidation product (water) is environmentally benign. However, its utilization is impeded by the lack of an efficient storage device. A new building block approach is proposed for an exhaustive search of optimal hydrogen uptakes in a series of low density boron nitride (BN) nanoarchitectures via extensive 3868 ab initio‐based multiscale simulations. By probing various geometries, temperatures, pressures, and doping ratios, these results demonstrate a maximum uptake of 8.65 wt% at 300 K, the highest hydrogen uptake on sorbents at room temperature without doping. Li+ doping of the nanoarchitectures offers a set of optimal combinations of gravimetric and volumetric uptakes, surpassing the US Department of Energy targets. These findings suggest that the merger of energetic affinity and optimal geometry in BN building blocks overcomes the intrinsic limitations of sorbent materials, putting hybrid BN nanoarchitectures on equal footing with hydrides while demonstrating a superior capacity‐kinetics–thermodynamics relationship.  相似文献   
9.
10.
The performance of potassium carbonate (K2CO3) solution promoted by three amines, potassium alaninate (K-Ala), potassium serinate (K-Ser) and aminoethylethanolamine (AEEA), in terms of heat of absorption, absorption capacity and rate was studied experimentally. The experiments were performed using a batch reactor, and the results were compared to pure monoethanolamine (MEA) and K2CO3 solutions. The heat of absorption of K2CO3+additive solution was calculated using the Gibbs-Helmholtz equation. In addition, a correlation for prediction of CO2 loading was presented. The results indicated that absorption heat, absorption rate and loading capacity of CO2 increase as the concentration of additive increases. The blend solutions have higher CO2 loading capacity and absorption rate when compared to pure K2CO3. The heat of CO2 absorption for K2CO3+additive solutions was found to be lower than that of the pure MEA. Among the additives, AEEA showed the highest CO2 absorption capacity and absorption rate with K2CO3. In conclusion, the K2CO3+AEEA solution with high absorption performance can be a potential solvent to replace the existing amines for CO2 absorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号