首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
轻工业   2篇
一般工业技术   3篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The biogenic synthesis of silver nanoparticles was achieved by using gum kondagogu (Cochlospermum gossypium), a natural biopolymer (Gk‐AgNPs). Synthesised nanoparticles were characterised by using UV–visible spectroscopy, inductively coupled plasma‐atomic emission spectrometer, X‐ray diffraction, transmission electron microscope techniques. The silver nano particle size determined was found to be 3.6 ± 2.2 nm. The synthesised Gk‐AgNPs showed antifungal activity and exhibited minimum inhibitory concentration and minimal fungicidal concentration values ranging from 3.5 to 6.5 µg mL−1 against Aspergillus parasiticus (NRRL‐2999) and Aspergillus flavus (NRRL‐6513). Scanning electron microscopy–energy dispersive spectroscopy analysis revealed morphological changes including deformation, shrunken and ruptured mycelium of the fungi. At the biochemical level, the mode of action revealed that there was an elevated level of reactive oxygen species, lipid peroxidation, superoxide dismutase, and catalase enzyme activity. Increased oxidative stress led to increased outer membrane damage, which was confirmed by the entry of N ‐phenyl naphthylamine to the phospholipid layer of outer membrane and higher levels of K+ release from the fungi treated with Gk‐AgNPs. This study explores the possible application of biogenic silver nanoparticles produced from gum kondagogu as potent antifungal agents. The potent antifungal activity of Gk‐AgNPs gives scope for its relevance in biomedical application and as a seed dressing material.Inspec keywords: antibacterial activity, nanocomposites, silver, nanofabrication, nanoparticles, biomedical materials, polymers, visible spectra, ultraviolet spectra, atomic emission spectroscopy, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, microorganisms, X‐ray chemical analysis, enzymes, lipid bilayers, biomembranes, biomechanics, nanomedicineOther keywords: antifungal activity, gum kondagogu‐silver nanobiocomposite, Cochlospermum gossypium, natural biopolymer, UV‐visible spectroscopy, inductively coupled plasma‐atomic emission spectrometer, X‐ray diffraction, transmission electron microscope, fungicidal concentration, Aspergillus parasiticus, Aspergillus flavus, scanning electron microscopy, SEM‐energy dispersive spectroscopy, fungi deformation, ruptured mycelium, reactive oxygen species, lipid peroxidation, superoxide dismutase, catalase enzyme activity, oxidative stress, membrane damage, N‐phenyl naphthylamine, phospholipid layer, potassium ion release, biogenic silver nanoparticle, antifungal agent, seed dressing material, Ag  相似文献   
2.
Green synthesis of organic Pt‐nanocomposite was accomplished using carboplatin as a precursor and novel biopolymer – gum kondagogu (GK) as a reducing agent. The synthesised GK stabilised organic Pt‐nanocomposite (GKCPt NC) was characterised by different analytical techniques such as ultraviolet–visible spectroscopy, nanoparticle analyser, scanning electron microscopy and energy dispersive X‐ray analysis, X‐ray diffraction (XRD), Fourier‐transform infrared spectroscopy, transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectrophotometer. The XRD pattern established the amorphous nature of GKCPt NC. TEM analysis revealed the homogeneous, monodisperse and spherical nature, with Pt metal size of 3.08 ± 0.62 nm. The binding energy at 71.2 and 74.6 eV show the presence of metallic platinum, Pt(0) confirmed by XPS studies. Further, in vitro radical scavenging and antitumour activity of GKCPt NC have been investigated. In comparison to GK and carboplatin, GKCPt NC showed superior 1, 1‐diphenyl‐2‐picrylhydrazyle activity of 87.82%, whereas 2, 2‐azinobis‐(3‐ethylbenzthinzoline‐6‐sulphonic acid) activity was 38.50%, respectively. In vitro studies of the antitumour property of GK, GKCPt NC and carboplatin were evaluated by potato disc tumour bioassay model. The efficacy of synthesised GKCPt NC concentration (IC50) on tumour inhibition was found to be 2.04‐fold lower as compared to carboplatin. Overall, the synthesised GKCPt NC shows both antitumour and antioxidant properties when compared to the original drug – carboplatin and might have promising applications in cancer therapy.Inspec keywords: nanoparticles, tumours, ultraviolet spectra, drugs, free radical reactions, X‐ray photoelectron spectra, platinum, nanocomposites, X‐ray diffraction, visible spectra, X‐ray chemical analysis, nanofabrication, transmission electron microscopy, scanning electron microscopy, cancer, polymer structure, filled polymers, Fourier transform infrared spectra, binding energy, drug delivery systems, nanomedicineOther keywords: antioxidant properties, green synthesis, ultraviolet–visible spectroscopy, energy dispersive X‐ray analysis, X‐ray diffraction, Fourier‐transform infrared spectroscopy, transmission electron microscopy, inductively coupled plasma optical emission spectrophotometry, antitumour activity, carboplatin precursor, biopolymer gum kondagogu stabilised organic Pt‐nanocomposite, reducing agent, different analytical techniques, scanning electron microscopy, X‐ray photoelectron spectroscopy, homogeneous particles, binding energy, in vitro radical scavenging, 1,1‐diphenyl‐2‐picrylhydrazyle activity, 2, 2‐azinobis‐(3‐ethylbenzthinzoline‐6‐sulphonic acid) activity, tumour inhibition, Pt  相似文献   
3.
Journal of Materials Science: Materials in Electronics - Gum kondagogu (GK), a natural biopolymer was successfully employed in the synthesis of trimetallic (AgAuPd) nanocomposites and characterized...  相似文献   
4.
5.
Novel thin-layer chromatography-digital image-based analytical methods were developed for the quantitation of ergosterol and chitin content in six food matrices (rice, wheat, maize, sorghum, groundnut, and sunflower), artificially infested with Aspergillus flavus (MTCC 6513)/Fusarium verticillioides (MRC 826). For ergosterol, single-step method, based on liquid/liquid extraction, was followed by thin-layer chromatography (TLC). Chitin was solubilized using lithium chloride (5%) in dimethyl acetamide and converted to chitosan using 5 N NaOH and subsequently complexed with calcofluor white dye. The absorption and emission maxima of chitosan-calcofluor complex were recorded at λ 350/230 and 430 nm, respectively. The sensitivity based on the limit of detection (LOD) was found to be 100 ng both for ergosterol and chitin analysis. Based on ergosterol and chitin analysis, groundnut and maize were found to be suitable substrates for A. flavus (p?<?0.013 and p?<?0.01), while sorghum followed by groundnut and sunflower were found to be ideal for F. verticillioides (p?<?0.01 and p?<?0.0001) and rice was established as poor substrate as there was no growth on it up to 12 days of incubation. A strong correlation was found between ergosterol and chitin contents with regression (r 2) values of 0.974 and 0.997 in food grains inoculated with A. flavus and F. verticillioides, respectively, during the period of infection. The authenticity of the two methods developed was further confirmed by applying them to commercial food grains and flours. Thus, ergosterol in combination with chitin analysis could be successfully used as an index of fungal contamination employing TLC-digital-based analytical methods.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号