首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
化学工业   7篇
金属工艺   1篇
机械仪表   1篇
建筑科学   1篇
能源动力   1篇
轻工业   5篇
石油天然气   1篇
无线电   1篇
一般工业技术   8篇
自动化技术   2篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2012年   1篇
  2006年   2篇
  2003年   3篇
  1994年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
The barriers for the encapsulation and decapsulation of hydrogen ions (cationic hydrogen and hydride), atom, and molecule through silicon carbide nanotube are thoroughly studied. DFT method is selected to measure the kinetic barriers for the passage of hydrogen atom, ions and molecule through nanotube via scanning potential energy surface. The kinetic barriers for the passage (encapsulation and decapsulation) of hydrogen are very important to understand the mechanism of hydrogen storage and release. The barriers for the permeation of H, H+ and H? across SiC nanosheet are lower compared to hydrogen molecule (H2). The exohedral and endohedral adsorption of hydrogen ions (cation and anion), atom and exohedral hydrogen molecule on silicon carbide are exothermic in nature. Whereas the encapsulation of hydrogen molecule in silicon carbide is endothermic. Electronic properties are analyzed through measurement of energy gap between highest occupied and lowest unoccupied molecular orbitals gap (GH-L) and the density of state (DOS) spectra. The GH-L analysis reveals that endohedral complexes have more pronounced effect on electronic properties compared to exohedral complexes. The SiC nanotube has highly favorable properties for storage and release of hydrogen ions, and atom.  相似文献   
2.
An optimized one-pot recipe has been developed to synthesize a surfactant molecule, referred to as OMID, consisting of an imidazoline head group and aliphatic tail, which is an exemplar corrosion inhibitor for carbon steel in acidic solutions. As evidenced by gas chromatography, 1H and 13C nuclear magnetic resonance, and Fourier-transform infrared data, a high-purity product was achieved without the use of either a solvent or catalyst. Critical micelle concentration values and corrosion inhibition efficiencies ( η %) were determined in aqueous solutions of hydrochloric acid and sulfuric acid using surface tensiometry and linear polarization resistance measurements, respectively. Hydrolysis of the imidazoline head group as a function of pH (0–11) was explored with ultraviolet–visible absorption spectroscopy. In addition, N 1s and C 1s X-ray photoelectron spectroscopy data were acquired from both surface-adsorbed OMID and a multilayer of the imidazoline head group of OMID. These latter data are highly relevant to those attempting to understand OMID inhibition chemistry.  相似文献   
3.
Disinfection practices reduce the incidence of water‐borne diseases but may result in formation of disinfection byproducts (DBPs) in raw water that are reported to be carcinogenic. Central composite design (CCD) was employed in the present study for optimization of disinfectant dose and contact time with the rationale to evaluate if an optimal balance could be achieved between minimal DBPs formation and effective microbial inactivation with either free or combined chlorine in treated water within a lab‐scale prototype network to simulate real water distribution network conditions. After a series of experimental runs based upon design of experiments (DoE) by CCD, dose was found to be the most significant factor (P < 0.01) in determining DBPs formation in both disinfectant’s applications. Where, contact time significantly (P < 0.01) affected bacterial inactivation in chlorination experiments, in contrast, dose was effective in chloramination experiments. Thus, it was concluded that the optimal balance may be achieved in the water networks with the help of multifactorial optimization when disinfectant dose was maintained near 3 mg/L as applied chlorine dose in both disinfection cases, while contact time was 62 and 155 min for chlorine and chloramine, respectively.  相似文献   
4.
The evolution of new SARS-CoV-2 variants around the globe has made the COVID-19 pandemic more worrisome, further pressuring the health care system and immunity. Novel variations that are unique to the receptor-binding motif (RBM) of the receptor-binding domain (RBD) spike glycoprotein, i. e. L452R-E484Q, may play a different role in the B.1.617 (also known as G/452R.V3) variant's pathogenicity and better survival compared to the wild type. Therefore, a thorough analysis is needed to understand the impact of these mutations on binding with host receptor (RBD) and to guide new therapeutics development. In this study, we used structural and biomolecular simulation techniques to explore the impact of specific mutations (L452R-E484Q) in the B.1.617 variant on the binding of RBD to the host receptor ACE2. Our analysis revealed that the B.1.617 variant possesses different dynamic behaviours by altering dynamic-stability, residual flexibility and structural compactness. Moreover, the new variant had altered the bonding network and structural-dynamics properties significantly. MM/GBSA technique was used, which further established the binding differences between the wild type and B.1.617 variant. In conclusion, this study provides a strong impetus to develop novel drugs against the new SARS-CoV-2 variants.  相似文献   
5.
The first step of urine formation is the selective filtration of the plasma into the urinary space at the kidney structure called the glomerulus. The filtration barrier of the glomerulus allows blood cells and large proteins such as albumin to be retained while eliminating the waste products of the body. The filtration barrier consists of three layers: fenestrated endothelial cells, glomerular basement membrane, and podocytes. Podocytes are specialized epithelial cells featured by numerous, actin-based projections called foot processes. Proteins on the foot process membrane are connected to the well-organized intracellular actin network. The Rho family of small GTPases (Rho GTPases) act as intracellular molecular switches. They tightly regulate actin dynamics and subsequent diverse cellular functions such as adhesion, migration, and spreading. Previous studies using podocyte-specific transgenic or knockout animal models have established that Rho GTPases are crucial for the podocyte health and barrier function. However, little attention has been paid regarding subcellular locations where distinct Rho GTPases contribute to specific functions. In the current review, we discuss cellular events involving the prototypical Rho GTPases (RhoA, Rac1, and Cdc42) in podocytes, with particular focus on the subcellular compartments where the signaling events occur. We also provide our synthesized views of the current understanding and propose future research directions.  相似文献   
6.
This paper developed new and efficient image watermarking scheme for copyright protection based on Lifting wavelet transform (LWT) and Bi- dimensional Empirical Mode Decomposition (BEMD). A LWT has been selected because it is fast, less computational cost and maintains the integrity of the recovered watermark. The BEMD transform can separate the image from the most robust to the least sensitive or fragile frequency bands. This advantage is utilised in this study for the purpose of embedding the watermark in the robust part of BEMD, i.e. the residue (r). In addition, the embedding process has been performed in the low sub-band of LWT decomposed image as the low sub-band is more robust to image processing such as JPEG compression. The robust watermark which is grey scale image is decomposed using DWT to enhance the security and select only high sub-band as it has less impact on the quality of the watermarked image. As a result, the original image’s visual quality can be preserved and the concealed watermark could be successfully retrieved even if the watermarked images have undergone severe attacks like JPEG, rotation, Gamma correction, filtering, additive noise, translation, shearing, and scaling. Furthermore, the improved scheme offers greater robustness against many image processing operations, in comparison to the current schemes about copyright protection.  相似文献   
7.
The optimal control of selectivity is an important method to trigger catalyst activity in the Fischer-Tropsch synthesis to produce favorable products. The determination of a model that will show the extent of product dependence on various parameters is of great importance in the Fischer-Tropsch synthesis. Efforts to increase a product in industry can be economical. In this research, a comprehensive method was evaluated to create a selectivity model of catalyst Fe/Cu/K/SiO2 of hydrocarbon products under conditions of temperature, pressure, and space velocity in a fixed-bed reactor. The response surface methodology was used in order to optimize process conditions and the relation of continuous functions between variables, so that the obtained model showed the selectivity of methane, light olefin hydrocarbons, heavy hydrocarbons products by factors such as temperature, pressure, and space velocity. A comparison of the models showed space velocity, among all the other factors, had a considerable effect on the increase selectivity of light hydrocarbons. On the other hand, the selectivity of methane indicates that temperature decrease parameter has the minimum effect on production. Whereas, the temperature rise cause reduces heavy hydrocarbons. The goal is to maximizing light hydrocarbon and minimizing methane and heavy hydrocarbon products.
  • Highlights
  • ? Comprehensive equations to achieve selectivity model of hydrocarbon products.

  • ? The response surface methodology was used in order to optimize process conditions.

  • ? The optimum products condition was obtained by using the obtained equations.

  相似文献   
8.

Other Index

Contents by Keyword  相似文献   
9.
In this investigation, chromium modified diamond-like-carbon (Cr-DLC) films were studied for potential applications in mechanical heart valves. Three Cr- DLC samples were prepared using a magnetron sputtering technique employing an intensified plasma assisted processing (IPAP) system. The three samples consisted of the following Cr content: 1 at.%, 5 at.% and 10 at.%. The biological response of human micro-vascular endothelial cells (HMV-EC) seeded on Cr-DLC films was evaluated in terms of initial cell attachment and growth. The Cr-DLC films were characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), secondary ion mass spectroscopy (SIMS) and by the contact angle technique. Endothelial cell adhesion and growth was found to be affected by changing the Cr content of Cr-DLC films.  相似文献   
10.
The technological integration of the Internet of Things (IoT)-Cloud paradigm has enabled intelligent linkages of things, data, processes, and people for efficient decision making without human intervention. However, it poses various challenges for IoT networks that cannot handle large amounts of operation technology (OT) data due to physical storage shortages, excessive latency, higher transfer costs, a lack of context awareness, impractical resiliency, and so on. As a result, the fog network emerged as a new computing model for providing computing capacity closer to IoT edge devices. The IoT-Fog-Cloud network, on the other hand, is more vulnerable to multiple security flaws, such as missing key management problems, inappropriate access control, inadequate software update mechanism, insecure configuration files and default passwords, missing communication security, and secure key exchange algorithms over unsecured channels. Therefore, these networks cannot make good security decisions, which are significantly easier to hack than to defend the fog-enabled IoT environment. This paper proposes the cooperative flow for securing edge devices in fog-enabled IoT networks using a permissioned blockchain system (pBCS). The proposed fog-enabled IoT network provides efficient security solutions for key management issues, communication security, and secure key exchange mechanism using a blockchain system. To secure the fog-based IoT network, we proposed a mechanism for identification and authentication among fog, gateway, and edge nodes that should register with the blockchain network. The fog nodes maintain the blockchain system and hold a shared smart contract for validating edge devices. The participating fog nodes serve as validators and maintain a distributed ledger/blockchain to authenticate and validate the request of the edge nodes. The network services can only be accessed by nodes that have been authenticated against the blockchain system. We implemented the proposed pBCS network using the private Ethereum 2.0 that enables secure device-to-device communication and demonstrated performance metrics such as throughput, transaction delay, block creation response time, communication, and computation overhead using state-of-the-art techniques. Finally, we conducted a security analysis of the communication network to protect the IoT edge devices from unauthorized malicious nodes without data loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号