首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
化学工业   13篇
金属工艺   1篇
轻工业   4篇
一般工业技术   6篇
原子能技术   2篇
自动化技术   2篇
  2022年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2002年   1篇
  2001年   2篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
In this paper we presented experimental investigation of effects of local limiter biasing (Vbiasing = +200 v, Vbiasing = +320 v) on the plasma parameters as plasma current, loop voltage, poloidal beta, plasma pressure, plasma energy, plasma resistance, plasma temperature, plasma displacement, Shafranov parameter and plasma internal inductance in IR-T1 tokamak. For these purposes, array of magnetic probes and also a diamagnetic loop have been used. The results show that applied biased voltage Vbiasing = +200 v causes to decrease of about 40 % in plasma internal inductance. The plasma resistance and the plasma displacement have been decreased by Vbiasing = +200 v. The main result of the application of Vbiasing = +200 v is flatting the plasma parameters profiles. In other words, the addition of biasing voltage Vbiasing = +200 v to plasma could be effective for improving the quality of tokamak plasma discharge by creating the steady state plasma. The plasma current, plasma pressure, plasma energy, plasma temperature and shift parameter have increased after the application of limiter biasing with Vbiasing = +320 v but they decrease rapidly.  相似文献   
2.
In the present work, benzyl triethanol ammonium chloride (BTEAC) was employed as a reactive bactericidal additive for preparing of polyurethane coatings. In this regard, castor oil as a renewable resource-based polyol, polyethylene glycol (PEG1000), and BTEAC were reacted with toluene diisocyanate. Physical, mechanical, and thermal characteristics as well as biocompatibility and antibacterial properties of polyurethanes were evaluated. The prepared polyurethanes showed two-phase structure with soft and hard segments glass transition temperature transitions in the range of 18–70 and 85–153 °C, respectively. Initial modulus and tensile strength were improved for coatings with higher BTEAC content, while elongation at break and thermal stability were decreased. Hydrophilicity of coatings was increased for polyurethanes based on higher content of BTEAC and PEG1000. Polyurethanes with higher BTEAC content showed better cytocompatibility for mouse L929 fibroblast cells. Moreover, coatings with higher hydrophilicity and BTEAC content displayed superior antibacterial activity against both Escherichia coli and Staphylococcus aureus bacteria.  相似文献   
3.
An efficient palladium nanoparticles-catalyzed N-arylation of sulfonamides and sulfonyl azides is described. This procedure serves as an active protocol for intermolecular C–N bond formation using Pd(OAc)2 in PEG-400 under air. Aryl bromides and triflates react at 35°C, while aryl chlorides require heating to 50°C and give the desired products only in low yields. This reaction proceeds smoothly in acceptable yields using low catalyst loading.  相似文献   
4.
5.
A new Cu2+ carbon paste electrode (CPE) using 2,2′-(1E,1′E)-1,1′-(2,2′-azanediylbis (ethane-2,1-diyl)bis(azan-1-yl-1-ylidene))bis(ethan-1-yl-1-ylidene)diphenol (ADEZEDP) has been prepared. The influence of variables including sodium tetraphenylborate (NaTPB), ionophore, and amount of multiwalled carbon nanotubes (MWCNT), CdO nanowires, CdS nanoparticles and palladium nanoparticles loaded on ADEZEDP and Nujol on the electrodes response were studied and optimized. At optimum values of all variables, for each nanomaterial the electrode response was linear in concentration range of 1.0 × 10? 8 to 1.0 × 10? 1 mol L? 1 for ADEZEDP with Nernstian slope. The good performance of electrode viz. Wide applicable pH range (2.0–5.0), fast response time (≈ 6 s), and adequate life time (3 months) indicate the utility of the proposed electrodes for evaluation of Cu2+ ion content in various situations. Finally, these electrodes have been successfully applied for the determination of Cu2+ ions content in various real samples. The selectivity of proposed electrode was evaluated by separation solution method and fixed interference method.  相似文献   
6.
In this study, the effect of low selenium concentrations on bacteria growth, selenium bioaccumulation, and selenium speciation in Pediococcus acidilactici was investigated. Six different sodium selenite (Na2SeO3) solutions with concentrations of 0, 0.5, 1, 2, 3, and 4 mg/L were added in MRS broth for 24 h. Then, the obtained bacterial pellets were weighed. The contents of total selenium and selenium species in the bacterial pellets were measured via optimized enzymatic hydrolysis and HPLC-ICP-MS. The maximum dried P. acidilactici biomass of 1.44 g/L was achieved by utilizing 1 mg/L Na2SeO3. By increasing sodium selenite concentrations, total selenium contents were significantly increased from 0.14 to 1.45 mg/g dry weight (p < 0.05). The findings indicated that selenium was favorably incorporated into the bacteria protein fraction and mainly formed selenocysteine. Therefore, selenium-enriched lactic acid bacterium P. acidilactici can deliver a less-toxic, more bioavailable selenium source for human and animal nutrition.  相似文献   
7.
In water and in the presence of 1 mol % of Poly(ethylene glycol)-bounded sulfonic acid, amines undergo smooth condensation with 2,5-hexadione at room temperature to afford the corresponding pyrroles in good to excellent yields. The sole products were solidified as the reaction proceeded and separated by simple filtration. In addition, bispyrroles were synthesized in excellent yields via this eco-friendly protocol. The method is easy, simple, cost-effective, chemoselective, and environmentally benign that introduces a beautiful example of click chemistry in water. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
8.
9.
Poly acrylic acid (PAA) was grafted with pt‐butyl calix[4]arene diamine (distal cone) (2) to adsorb toxic heavy metal and alkali metal cations. The grafting method includes the amidation reaction of PAA with calixarene diamine derivative 2 which was carried out in N,N‐dimethylformamide (DMF) and N–methyl‐2‐pyrrolidone (NMP) as solvents. The modified PAAs (PAA‐C1 and PAA‐C2) were characterized by FTIR, 1H‐NMR, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). PAA‐C1 and PAA‐C2 were used to evaluate the sorption properties of some toxic heavy metal cations (Co2+, Cu2+, Cd2+, Hg2+), alkali metal cations (Na+, K+, Cs+), and Ag+. Results showed that the modified PAAs were good sorbents for heavy metal and alkali metal cations. The main goal of this project is to design hydrophobically modified PAA that is suitable for ion selective membranes and chemical sensor devices for adsorption of toxic heavy metals. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
10.
Functionalized multiwall carbon nanotubes (f-MWCNTs) were used to reinforce the freeze-dried gelatin (G)/chitosan (Ch) scaffolds for bone graft substitution. Two types of G/Ch scaffolds at a ratio of 2:1 and 3:1 by weight incorporated with 0.025, 0.05, or 0.1 and 0.2 or 0.4?wt% f-MWCNT, respectively, were prepared by freeze drying, and their structure, morphology, and physicochemical and compressive mechanical properties were evaluated. The scaffolds exhibited porous structure with pore size of 80–300 and 120–140?µm for the reinforced scaffolds of G/Ch 2:1 and 3:1, respectively, and porosity 90–93% which slightly decreased with an increase in f-MWCNTs content for both types. Incorporation of f-MWCNTs led to 11- and 9.6-fold increase in modulus, with respect to their pure biopolymer blend scaffolds at a level of 0.05?wt% for G/Ch 2:1 and 0.2?wt% for G/Ch 3:1, respectively. The higher content of f-MWCNTs resulted in loss of mechanical properties due to agglomeration. The highest value of compressive strength and modulus was obtained for G/Ch 2:1 with 0.05?wt% f-MWCNT as 411?kPa and 18.7?MPa, respectively. Improvement of in vitro bioactivity as a result of f-MWCNTs incorporation was proved by formation of a bone-like apatite layer on the surface of scaffolds upon immersion in simulated body fluid. The findings indicate that the f-MWCNT-reinforced gelatin/chitosan scaffolds may be a suitable candidate for bone tissue engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号