首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
轻工业   3篇
一般工业技术   5篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
The present work was aimed at developing an optimized oral nanostructured lipid carrier (NLC) formulation of poorly soluble atorvastatin Ca (AT Ca) and assessing its in vitro release, oral bioavailability and pharmacodynamic activity. In this study, chlorogenic acid, a novel excipient having synergistic cholesterol lowering activity was utilized and explored in NLC formulation development. The drug-loaded NLC formulations were prepared using a high pressure homogenization technique and optimized by the Box-Behnken statistical design using the Design-Expert software. The optimized NLC formulation was composed of oleic acid and stearic acid as lipid phase (0.9% w/v), poloxamer 188 as surfactant (1% w/v) and chlorogenic acid (0.05% w/v). The mean particle size, polydispersity index (PDI) and % drug entrapment efficiency of optimized NLC were 203.56?±?8.57?nm, 0.27?±?0.028 and 83.66?±?5.69, respectively. In vitro release studies showed that the release of drug from optimized NLC formulations were markedly enhanced as compared to solid lipid nanoparticles (SLN) and drug suspension. The plasma concentration time profile of AT Ca in rats showed 3.08- and 4.89-fold increase in relative bioavailability of developed NLC with respect to marketed preparation (ATORVA® tablet) and drug suspension, respectively. Pharmacodynamic study suggested highly significant (**p?0.01) reduction in the cholesterol and triglyceride values by NLC in comparison with ATORVA® tablet. Therefore, the results of in vivo studies demonstrated promising prospects for successful oral delivery of AT Ca by means of its chlorogenic acid integrated NLC.  相似文献   
2.
Abstract

Context: Brain disorders remain the world's leading cause of disability, and account for more hospitalizations and prolonged care than almost all other diseases combined. The majority of drugs, proteins and peptides do not readily permeate into brain due to the presence of the blood–brain barrier (BBB), thus impeding treatment of these conditions.

Objective: Attention has turned to developing novel and effective delivery systems to provide good bioavailability in the brain.

Methods: Intranasal administration is a non-invasive method of drug delivery that may bypass the BBB, allowing therapeutic substances direct access to the brain. However, intranasal administration produces quite low drug concentrations in the brain due limited nasal mucosal permeability and the harsh nasal cavity environment. Pre-clinical studies using encapsulation of drugs in nanoparticulate systems improved the nose to brain targeting and bioavailability in brain. However, the toxic effects of nanoparticles on brain function are unknown.

Result and conclusion: This review highlights the understanding of several brain diseases and the important pathophysiological mechanisms involved. The review discusses the role of nanotherapeutics in treating brain disorders via nose to brain delivery, the mechanisms of drug absorption across nasal mucosa to the brain, strategies to overcome the blood brain barrier, nanoformulation strategies for enhanced brain targeting via nasal route and neurotoxicity issues of nanoparticles.  相似文献   
3.
Objective: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder manifested by cognitive, memory deterioration and variety of neuropsychiatric symptoms. Donepezil is a reversible cholinesterase inhibitor used for the treatment of AD. The purpose of this work is to prepare a nanoparticulate drug delivery system of donepezil using poly(lactic-co-glycolic acid) (PLGA) for sustained release and efficient brain targeting.

Materials and methods: PLGA nanoparticles (NPs) were prepared by the solvent emulsification diffusion–evaporation technique and characterized for particle size, particle-size distribution, zeta potential, entrapment efficiency, drug loading and interaction studies and in vivo studies using gamma scintigraphy techniques.

Results and discussion: The size of drug-loaded NPs (drug polymer ratio 1:1) was found to be 89.67?±?6.43?nm. The TEM and SEM images of the formulation suggested that particle size was within 20–100?nm and spherical in shape, smooth morphology and coating of Tween-80 on the NPs was clearly observed. The release behavior of donepezil exhibited a biphasic pattern characterized by an initial burst release followed by a slower and continuous sustained release. The biodistribution studies of donepezil-loaded PLGA NPs and drug solution via intravenous route revealed higher percentage of radioactivity per gram in the brain for the nanoparticulate formulation as compared with the drug solution (p?Conclusion: The high concentrations of donepezil uptake in brain due to coated NPs may help in a significant improvement for treating AD. But further, more extensive clinical studies are needed to check and confirm the efficacy of the prepared drug delivery system.  相似文献   
4.
5.
Context: Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra.

Objective: The purpose of the present study was to investigate the possibility of targeting an anti-Parkinson’s drug ropinirole (RH) to the brain using polymeric nanoparticles.

Materials and methods: Ropinirole hydrochloride (RH)-loaded chitosan nanoparticles (CSNPs) were prepared by an ionic gelation method. The RH-CSNPs were characterized for particle size, polydispersity index (PDI), zeta potential, loading capacity, entrapment efficiency in vitro release study, and in vivo distribution after intranasal administration.

Results and discussion: The RH-CSNPs showed sustained release profiles for up to 18?h. The RH concentrations (% Radioactivity/g) in the brain following intranasal administration (i.n.) of RH-CSNPs were found to be significantly higher at all the time points compared with RH solution. The concentration of RH was highest in the liver (7.210?±?0.52), followed by kidneys (6.862?±?0.62), intestine (4.862?±?0.45), and lungs (4.640?±?0.92) in rats following i.n. administration of RH-CSNPs. Gamma scintigraphy imaging in rats was performed to ascertain the localization of drug in the brain following intranasal administration of formulations. The brain/blood ratios obtained (0.251?±?0.09 and 0.386?±?0.57 of RH (i.n.) and RH-CSNPs (i.n.), respectively) at 0.5?h are indicative of direct nose to brain transport, bypassing the blood–brain barrier (BBB).

Conclusion: The novel formulation showed the superiority of nose to brain delivery of RH using mucoadhesive nanoparticles compared with other delivery routes reported earlier.  相似文献   
6.
Worldwide obesity has reached a pandemic proportion. World Health Organization (WHO) estimates that by 2020, two thirds of the global disease burden will be attributable to obesity and obesity associated complications. Existing anti-obesity drugs, affecting one of the fundamental processes of the weight regulation in human body, have displayed serious side effects which outweigh their beneficial effects. Clinical and non-clinical researchers in this area are now facing a challenge to search for non-pharmacological alternatives for the prevention of obesity. Dietary interventions and life style changes with enhanced physical activity are two such options. Considering the importance of dietary interventions, the present review highlights the role, significance and potential of functional food ingredients for the management of obesity and associated co-morbidities.  相似文献   
7.
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号