首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5694篇
  免费   481篇
  国内免费   60篇
电工技术   139篇
综合类   20篇
化学工业   1657篇
金属工艺   149篇
机械仪表   204篇
建筑科学   242篇
矿业工程   11篇
能源动力   342篇
轻工业   407篇
水利工程   92篇
石油天然气   87篇
武器工业   5篇
无线电   573篇
一般工业技术   926篇
冶金工业   284篇
原子能技术   41篇
自动化技术   1056篇
  2024年   14篇
  2023年   108篇
  2022年   165篇
  2021年   354篇
  2020年   297篇
  2019年   376篇
  2018年   448篇
  2017年   406篇
  2016年   370篇
  2015年   247篇
  2014年   399篇
  2013年   587篇
  2012年   407篇
  2011年   468篇
  2010年   288篇
  2009年   265篇
  2008年   173篇
  2007年   110篇
  2006年   116篇
  2005年   76篇
  2004年   55篇
  2003年   64篇
  2002年   55篇
  2001年   33篇
  2000年   34篇
  1999年   29篇
  1998年   43篇
  1997年   28篇
  1996年   37篇
  1995年   17篇
  1994年   13篇
  1993年   14篇
  1992年   5篇
  1991年   14篇
  1990年   12篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1984年   10篇
  1983年   10篇
  1982年   8篇
  1981年   6篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   7篇
  1976年   6篇
  1975年   11篇
  1974年   4篇
  1973年   5篇
排序方式: 共有6235条查询结果,搜索用时 31 毫秒
1.
In the presence of modified methylaluminoxane as cocatalyst, the behavior of a binary catalytic system based on pyridine-imine nickel ( N ) and iron ( F ) catalysts was evaluated in order to reach a proper mixture of polyethylene (PE). A computational study along with kinetic profile suggested that the catalyst F with higher electron affinity (A) and electrophilicity (ω) in the methyl cationic active center and stronger interaction with the monomer led to high integrated monomer consumption and higher activity. In addition, the samples produced by the mixture of catalysts showed a higher value of [19.4 × 104 g (PE) mol (Fe+Ni)−1 h−1)], melting point (127.8 °C), and crystallinity extent (41.29%) than the samples produced by the single catalysts. The addition of multiwalled carbon nanotubes (MWCNT) into the polymerization media reduced the activity of catalysts [from 7.50 × 104 to 0.66 × 104 g (PE) mol (Fe+Ni)−1 h−1] and the thermal properties of the low-density polyethylene nanocomposite samples. However, the sample containing 2.33% MWCNT20-30 improved the total thermal stability of the neat polyethylene blend up to 400 °C. Scanning electron microscope images of the samples demonstrated irregular to virtually uniform morphologies were obtained through the in situ and solution-mixing techniques. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47376.  相似文献   
2.
Wireless Networks - Orthogonal frequency-division multiplexing with random multiple access (OFDRMA) is discussed for down-link communications, whereby a single base-station transmits information...  相似文献   
3.
Journal of Materials Science: Materials in Electronics - The main weakness of polymer gas sensors is its stability. Here, we report stability enhancement of a 100 nm polypyrrole (PPy) thin...  相似文献   
4.
Multimedia Tools and Applications - With the rapid development of detecting violent behaviors in surveillance cameras, requests on systems that automatically recognize violent events are expanded....  相似文献   
5.
In this work, we designed a magnetically-separable Fe3O4-rGO-ZnO ternary catalyst, ZnO anchored on the surface of reduced graphene oxide (rGO)-wrapped Fe3O4 magnetic nanoparticles, where rGO, as an effective interlayer, can enhance the synergistic effect between ZnO and Fe3O4. The effects of three operational parameters, namely irradiation time, hydrogen peroxide dosage, and the catalyst dosage, on the photo-Fenton degradation of methylene blue and methyl orange were investigated. The results showed that the Fe3O4-rGO-ZnO had great potential for the destruction of organic compounds from wastewater using the Fenton chemical oxidation method at neutral pH. Repeatability of the photocatalytic activity after 5 cycles showed only a tiny drop in the catalytic efficiency.  相似文献   
6.
Material encapsulation is a relatively new technique for coating a micro/nanosize particle or droplet with polymeric or inorganic shell. Encapsulation technology has many applications in various fields including drug delivery, cosmetic, agriculture, thermal energy storage, textile, and self-healing polymers. Poly(methyl methacrylate) (PMMA) is widely used as shell material in encapsulation due to its high chemical stability, biocompatibility, nontoxicity, and good mechanical properties. The main approach for micro/nanoencapsulation of materials using PMMA as shell comprises emulsion-based techniques such as emulsion polymerization and solvent evaporation from oil-in-water emulsion. In the present review, we first focus on the encapsulation techniques of liquid materials with PMMA shell by analyzing the effective processing parameters influencing the preparation of PMMA micro/nanocapsules. We then describe the morphology of PMMA capsules in emulsion systems according to thermodynamic relations. The techniques to investigation of mechanical properties of capsule shell and the release mechanisms of core material from PMMA capsules were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48039.  相似文献   
7.
ABSTRACT

The thermal characterization of aluminum flat grooved heat pipes is performed experimentally for different groove dimensions. Three heat pipes with groove widths of 0.2?mm, 0.4?mm, and 1.5?mm are used in the experiments. The effect of the amount of the working fluid is extensively studied for each groove width. The results reveal that, although all three succeed in dissipating the heat input through the phase change of the working fluid by continuous evaporation and condensation, the effectiveness of the heat transfer increases with reduced groove width. Furthermore, it is observed that there exists an optimum operating point, where the temperature difference between the heating and cooling sections is at a minimum, and the magnitude of this temperature difference is a strong function of the groove width. To the best of the authors’ knowledge, the combined effects of groove dimensions and the amount of the working fluid, from fully flooded to dry, is reported for the first time for aluminum flat grooved heat pipes.  相似文献   
8.
2,6-Bis(5-amino-1H-benzimidazol-2-yl)pyridine was prepared and characterized by Fourier transform infrared spectroscopy, elemental analysis, 1H-NMR, and 13C-NMR spectroscopic methods. Then a new poly(benzimidazole-amide) was synthesized by polymerization of the corresponding diamine and isophthalic acid. The obtained poly(benzimidazole-amide) exhibited good yield and high thermal stability. Due to the existence of benzimidazole moieties in polymer’s structure, it has the tendency to form complexes with metal ions. So, a new poly(benzimidazole-amide)/Co nanocomposite was prepared. Morphological studies revealed that metal nanoparticles were dispersed in the polymer matrix without any aggregation. poly(benzimidazole-amide)/Co nanocomposite was used as a catalyst in the oxidation of ethyl benzene to acetophenone with tert-butyl hydroperoxide.  相似文献   
9.
Solubility is one of the most indispensable physicochemical properties determining the compatibility of components of a blending system. Research has been focused on the solubility of carbon dioxide in polymers as a significant application of green chemistry. To replace costly and time-consuming experiments, a novel solubility prediction model based on a decision tree, called the stochastic gradient boosting algorithm, was proposed to predict CO2 solubility in 13 different polymers, based on 515 published experimental data lines. The results indicate that the proposed ensemble model is an effective method for predicting the CO2 solubility in various polymers, with highly satisfactory performance and high efficiency. It produces more accurate outputs than other methods such as machine learning schemes and an equation of state approach.  相似文献   
10.
Microbial fuel cell (MFC) is a promising technology for simultaneous wastewater treatment and energy harvesting. The properties of the anode material play a critical role in the performance of the MFC. In this study, graphene oxide was prepared by a modified hummer's method. A thin layer of graphene oxide was incorporated on the carbon brush using an electrophoretic technique. The deoxygenated graphene oxide formed on the surface of the carbon brush (RGO-CB) was investigated as a bio-anode in MFC operated with real wastewater. The performance of the MFC using the RGO-CB was compared with that using plain carbon brush anode (PCB). Results showed that electrophoretic deposition of graphene oxide on the surface of carbon brush significantly enhanced the performance of the MFC, where the power density increased more than 10 times (from 33 mWm?2 to 381 mWm?2). Although the COD removal was nearly similar for the two MFCs, i.e., with PCB and RGO-CB; the columbic efficiency significantly increased in the case of RGO-CB anode. The improved performance in the case of the modified electrode was related to the role of the graphene in improving the electron transfer from the microorganism to the anode surface, as confirmed from the electrochemical impedance spectroscopy measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号