首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
金属工艺   3篇
一般工业技术   6篇
冶金工业   4篇
原子能技术   1篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2013年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
In this work, thermal stability and oxidation resistance at temperatures up to 800°C are studied for (Ti,Al)N–(8–10 at %)Ni coatings with a thickness on the order of 4 µm and a crystallite size below 20 nm, which have been prepared via ion–plasma vacuum arc deposition. The composition and structural characteristics of coatings remain stable during 1-h heating in vacuum of 10–4 Pa at temperatures of 600 and 700°C. Heating at a temperature of 800°C leads to an increase in the crystallite size and a decrease in microstrains of a ceramic phase, which is accompanied by a reduction in the hardness of the coating from 51–53 to 31–33 GPa. The coatings are heat resistant up to 800°C and characterized by cohesive failure in scribing. The adhesive strength of coatings with a substrate exceeds 85 N. Studying electrochemical behavior reveals the high efficiency of (Ti,Al)N0.87–Ni coatings in corrosion protection of cutting tools in acid and alkaline environments.  相似文献   
2.
3.
Using an arc physical vapor deposition process, we have produced nanostructured Mo–Si–Al–Ti–Ni–N coatings with a multilayer architecture formed by Mo2N, AlN–Si3N4, and TiN–Ni and a crystallite size on the order of 6–10 nm. We have studied the physicomechanical properties of the coatings and their functional characteristics: wear resistance, adhesion to their substrates, and heat resistance. According to high-temperature (550°C) wear testing and air oxidation (600°C) results, the coatings studied here are wearand heat-resistant under appropriate temperature conditions. Their properties are compared to those of Mo–Si–Al–N coatings.  相似文献   
4.
Technical Physics Letters - The results of the simulation of plasma fluxes onto the surface of rotating substrates during the combustion of a vacuum arc of the Cr–Ti–Mo cathode system...  相似文献   
5.
6.
The present paper has aimed at studying heat resistance, electrochemical behavior, and tribological characteristics at high temperatures of superhard (~48 ± 2 GPa), multilayered with a modulation period of 17–18 nm, and nanostructured (nc)AlN-(am)Si3N4/(nc)TiN coatings obtained with an ion-plasma vacuum arc. The heat resistance of the coatings studied in the temperature range of up to 800°C inclusive was mainly determined by the oxidation of their surface layers without the substrate intrusion. Having a high coefficient of friction from 0.6 at 20°C to 0.8–0.85 at elevated temperatures, the coatings are characterized by virtually no wear, which was confirmed by profilometry measurements of friction zones. The obtained results concerning electrochemical behavior indicate that the Ti–Al–Si–N coatings are highly efficient in the protection of a cutting tool from corrosion in both acidic and alkaline media.  相似文献   
7.
The properties of nanostructured multilayered coatings of the composition (Ti,Al)N–Mo2N, which were fabricated by the ion-plasma vacuum-arc deposition (arc-PVD), are investigated. The thickness of coating layers is comparable with the grain size, which is about 30–50 nm. The coating hardness reaches 40 GPa with relative plastic deformation work of about 60%. It is established by measuring scratching that the cohesion destruction character of the coating occurs exclusively according to the plastic deformation mechanism, which evidences its high fracture toughness. The local coating attrition to the substrate takes place under a load on the order of 75 N. The coating friction coefficient in testing conditions according to the “pin-on-disc” layout using the Al2O3 counterbody under a load of 5 N is 0.35 and 0.50 at temperatures of 20 and 500°C, respectively. The coating is almost unworn because of the formation of MoO3 oxide (the Magneli phase) operating as the solid lubricant in the friction zone. An increase in the friction coefficient and noticeable wear are observed with the further increase in the testing temperature, which is associated with the sublimation intensification of MoO3 from the working surfaces and lowering its operational efficiency as the lubricant.  相似文献   
8.
Using an arc physical vapor deposition process, we have produced nanostructured Mo–Si–Al coatings with a uniform distribution of equiaxed grains 8–12 nm in size and Mo–Si–Al–N coatings with a multilayer structure and a modulation period from 22 to 25 nm. The former coatings consist of MoSi2 and Mo and the latter consist of Mo2N and amorphous Si3N4 and AlN. The hardness of the Mo–Si–Al–N and Mo–Si–Al coatings is 41 and 18 GPa, respectively; they are similar in resistance to elastic deformation; and the Mo–Si–Al–N coating has a considerably higher resistance to plastic deformation. The coatings have roughly identical coefficients of friction (~0.67–0.69 at 20°C and ~0.52–0.56 at 550°C), but the wear resistance of the Mo–Si–Al–N coating is higher by three and two orders of magnitude at 20 and 550°C, respectively. The coatings of the two systems exhibit good adhesion to the substrate and cohesive fracture. Partial wear of the Mo–Si–Al and Mo–Si–Al–N coatings in the course of scratch testing occurs at indentation loads of 80 and 63 N, respectively.  相似文献   
9.
Protection of Metals and Physical Chemistry of Surfaces - The electrochemical properties of Ti–Al–Mo–Ni–N coatings with a molybdenum content of 20 and 25 at % fabricated by...  相似文献   
10.
Technical Physics Letters - The macrostressed state of (Ti,Al)N–Cu and (Ti,Al)N–Ni ceramic–metal coatings obtained by the arc-PVD method has been studied using X-ray diffraction...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号