首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
化学工业   1篇
建筑科学   1篇
能源动力   1篇
无线电   3篇
一般工业技术   25篇
冶金工业   1篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   6篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Russian Journal of Non-Ferrous Metals - Adequate heat input provided by the proper combination of friction stir welding (FSW) parameters is critical to sound welding. Optimum parameter setting...  相似文献   
2.
Adhesively bonded composite patch repair has been widely used to restore or extend the service life of cracked structural components due to its effectiveness to mechanical repair technique. In this work, the finite element method is applied to analyse the performance of the bonded composite patch for repairing cracks emanating from semicircular notch root in pure mode II. The stress intensity factor was computed at the crack tip repaired using a boron/epoxy patch for different orientation of fibers, taking into account the disbond. In this case, the increase of a patch thickness reduces the negative effects of disbond. When this effect is significant between the patch and the plate, it reduces the repair effectiveness. The maximum reduction obtained by using a boron/epoxy of fibers in the x-direction is of the order of 20% more important compared to a patch having its fibers in the y-direction. The stress intensity factor exhibits an asymptotic behaviour as the disbond size increases.  相似文献   
3.
The adhesively bonded composite patch repair technique has been used to restore or extend the service life of the cracked aluminium structural components because of its efficiency. In this study, the finite element method is used to analyse the performance of the different bonded composite patches at a semicircular lateral notch and the repair of cracks emanating from this kind of notch. The knowledge of the stress distribution in the neighbourhood of the cracks is important for the analysis of their repair according to the geometry of the patch. The effects of the mechanical and geometrical properties on the variation of the stress intensity factor in the crack tip were highlighted. The effects of the adhesive properties and of the patch size on the stress intensity factor variation at the crack tip in mode I were also highlighted. The comparison between the double and single patch repairs is also given in this study. The results obtained show that the stress intensity factor of the crack tip repaired by two composite patches, is reduced to a half compared to the one that is repaired only by one patch. The orientation of fibres possessing a higher rigidity perpendicularly to the crack propagation considerably influences the reduction of the stress intensity factor. The adhesive properties must be optimised in order to increase the performance of the patch repair or the reinforcement.  相似文献   
4.
Deflection of a crack at the bimaterial interface is the initial mechanism required for obtaining enhanced toughness in bimaterial system. In this paper, a criterion is presented to predict the competition between crack deflection and penetration at the interface, using an energy release rate criterion. The finite element methods are used to calculate the strain energy release rates at the crack tip of alumina–metal bimaterial that either deflect or penetrate at the interface as a function of elastic mismatch and length of the deflected or penetrated crack. The effects of the elastic properties of two bonded materials were highlighted in order to evaluate the conditions for the crack deflection by the interface as well as the distance between the crack tip and the interface.  相似文献   
5.
Dental implant has been used and studied for the replacement of missing teeth for many years. It has been well known that the success of dental implant is heavily dependent on initial stability and long-term Osseointegration due to optimal stress distribution in the surrounding bones. For this reason, the search of the rational solutions to reduce these stresses has become an important issue in this field. Alternatives to reduce the forces transmitted to implants have been studied, including variations in implant positioning, implant design, prosthesis shape, occlusal requirements, prosthetic components and prosthetic materials. Thus, a new concept of adding a bio-elastomer to the prosthetic components of implant system was interposed between the abutment and the framework crown in order to damp the occlusive shocks and to attenuate the stress concentrated at the implant/bone interface. The new implant system design was assessed by the three dimensional finite element techniques using ABAQUS program to study the effect of elastomer material under an occlusal load on the induced equivalent von Mises interface stresses. These stresses were compared with those provoked by the standardized implant. The von Mises stress distribution indicated that stress was maximal around the top of the implant with varying intensities in the different loading cases. The stress was highest in the cortical bone at the neck of implant and lowest in the cancellous bone. Overall, the novel implant provoked lower interface stresses only in the cortical bone due to the stress shielding effect of the elastomeric stress barrier.  相似文献   
6.
Macroscopic vanadium oxide fibers have been fabricated by an extrusion process. By varying the shear rate associated with the gel extrusion process we have been able to tune the diameter and transversal geometry of the fibers at macroscopic length scales. At the mesoscopic length scale, small‐angle X‐ray scattering (SAXS) analysis provides evidence for the possibility of fine tuning the degree of alignment of the V2O5 ribbons inside the fibers; this alignment is clearly improved upon increasing the shear rate. Nitrogen physisorption measurements (Brunauer–Emmett–Teller (BET)) indicate that the as‐synthesized fibers exhibit poor mesoporosity, largely due to the presence of remaining poly(vinyl alcohol) (PVA) entities. Microscopically, from XRD measurements, the fiber structure appears to be semi‐crystalline. 51V magic angle spinning NMR (MAS NMR) spectroscopy reveals that the local environment of 51V is typical of the structure of a V2O5·1.8 H2O xerogel. We demonstrate here that the alignment of the nanoribbon subunits can be tuned via the shear rate applied during the extrusion process, which provides a good handle for tuning the mechanical and sensing properties of the as‐synthesized fibers.  相似文献   
7.
In this study, the distribution of the thermal residual stresses due to the adhesive curing in bonded composite repair is analysed using the finite element method. The computation of these stresses comprises all components of the structures: cracked plate, composite patch and adhesive layer. In addition, the influence of these residual stresses on the repair performance is highlighted by analysing their effect on the stress intensity factor at the crack tip. The obtained results show that the normal thermal stresses in the plate and the patch are important and the shear stresses are less significant. The level of the adhesive thermal stresses is relatively high. The presence of the thermal stresses increases the stress intensity factor at the crack tip, what reduce the repair performance.  相似文献   
8.
In this study, we use the finite element method to analyze the propagation's path of the crack in the orthopedic cement of the total hip replacement. In fact, a small python statement was incorporated with the Abaqus software to do in loop the following operations: extracting the crack propagation direction from the previous study using the maximal circumferential stresses criterion, drawing the new path, meshing and calculating again (stresses and fracture parameters). The loop is broken when the user's desired crack length is reached (number of propagations) or the value of the mode I stress intensity factor is negative. Results show that the crack propagation's path can be influenced by human body posture. The existing of a cavity in the vicinity of the crack can change its propagation path or can absolutely attract it enough to meet it. Crack can propagate in the outward direction (toward the acetabulum bone) and cannot propagate in the opposite direction, the mode I stress intensity factor increases with the crack length and that of mode II vanishes.  相似文献   
9.
In this study, the finite element method was used to analyse the crack behaviour in the cement of a reconstructed acetabulum by computing the stress intensity factors at the crack tip. Three loading cases were examined (Fig. 6). These cases present the different human body postures. Both positions and orientations of crack effect on the SIF variation were analysed. When valuating the crack position effect, one notices no risk of crack propagation under the load type 1; however, under the load type 2 and the load type 3 this risk is more important. Load type 3 is the most dangerous loading condition. When computing crack orientation, one noted that the risk of crack propagation is higher when the crack inclination is 20° and 100°.  相似文献   
10.
The mechanism of crack deviation by an interface modifies considerably the behaviour of bimaterials fracture. Their fracture resistance is highly affected by the difference of the elastic properties of the bonded materials. In this work, the finite element method is applied to analyze the behaviour of a crack emanating from semicircular notch root growing in interface ceramic/metal composites and perpendicularly to this interface. The obtained results showed that the crack grew to interface from harder material, its energy decreased at the approach of the interface, in this case was retarded; an inverse phenomenon occurs if the crack is propagated towards a lower strength material and its energy increases, it has tendency to accelerate. The effects of geometry on the crack deflection near the interface are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号