首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   1篇
一般工业技术   2篇
  2023年   1篇
  2021年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 10 毫秒
1
1.
This study was designed to develop a drug delivery system based on poly(N-isopropylacrylamide) (pNIPAM) hydrogel and a suitable solvent to enhance solubility and local release of curcumin. pNIPAM hydrogel was synthesized by radical polymerization. The chemical, mechanical and physical properties and biocompatibility of pNIPAM hydrogel were investigated as an implantable and rechargeable drug reservoir. Curcumin was loaded within pNIPAM hydrogel during swelling by using two different solvents; methanol, an organic solvent, and low molecular weight polyethylene glycol (PEG200), a polymeric solvent. The results of drug solubility showed that using PEG200 can increase curcumin solubility more than commonly used organic solvents such as methanol. Also, the release profile of drug-loaded hydrogels demonstrated that PEG200 has a superior effect on the cumulative amount of released curcumin (33.163 ± 0.319 μg/ml) compared to methanol (8.765 ± 0.544 μg/ml) during 1 week. Based on our results, curcumin-loaded hydrogels did not show any cytotoxicity, and pNIPAM/PEG combination represented an antibacterial effect within 12 hours. Accordingly, it can be concluded that pNIPAM hydrogel in combination with low molecular weight PEG200 could be used as an efficient drug delivery system to preserve and provide sustained release of curcumin as a hydrophobic drug.  相似文献   
2.
In this paper, an integrated solar heat pipe wall space heating system, employing double glazed heat pipe evacuated tube solar collector and forced convective heat transfer condenser, is introduced. Thermal performance of the heat pipe solar collector is studied and a numerical model is developed to investigate the thermal efficiency of the system, the inlet and outlet air temperatures and heat pipe temperature. Furthermore, the system performance is evaluated based on exergy efficiency. In order to verify the precision of the developed model, the numerical results are compared with experimental data. Parametric sensitivity for design features and material associated with the heat pipe, collector cover and insulation is evaluated to provide a combination with higher thermal performance. Simulation results show that applying a solar collector with more than 30 heat pipes is not efficient. The rate of increasing in temperature of air becomes negligible after 30 heat pipes and the trend of the thermal efficiency is descending with increasing heat pipes. The results also indicate that at a cold winter day of January, the proposed system with a 20 heat pipe collector shows maximum energy and exergy efficiency of 56.8% and 7.2%, which can afford warm air up to 30°C. At the end, the capability of the proposed system to meet the heating demand of a building is investigated. It is concluded that the best method to reach a higher thermal covered area is to apply parallel collectors.  相似文献   
3.

In this review, flat plate and concentrate-type solar collectors, integrated collector–storage systems, and solar water heaters combined with photovoltaic–thermal modules, solar-assisted heat pump solar water heaters, and solar water heaters using phase change materials are studied based on their thermal performance, cost, energy, and exergy efficiencies. The maximum water temperature and thermal efficiencies are enlisted to evaluate the thermal performance of the different solar water heaters. It is found that the solar water heaters’ performance is considerably improved by boosting water flow rate and tilt angle, modification of the shape and number of collectors, using wavy diffuse and electrodepositioned reflector coating, application of the corrugated absorber surface and coated absorber, use of turbulent enhancers, using thermal conductive working fluid and nanofluid, the inclusion of the water storage tank, and tank insulation. These items increase the heat transfer area and coefficient, thermal conductivity, the Reynolds and Nusselt numbers, heat transfer rate, and energy and exergy efficiencies. The evacuated tube heaters have a higher temperature compared to the collectors with a plane surface. Their thermal performance increases by using all-glass active circulation and heat pipe integration. The concentrative type of solar water heaters is superior to other solar heaters, particularly in achieving higher water temperatures. Their performance improves by using a rotating mirror concentrator. The integration of the system with energy storage components, phase change materials, or a heat pump provides a satisfactory performance over conventional solar water heaters.

Graphical abstract

Modification of solar water heaters

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号