首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59335篇
  免费   4974篇
  国内免费   2695篇
电工技术   3732篇
技术理论   4篇
综合类   4079篇
化学工业   9764篇
金属工艺   3467篇
机械仪表   3924篇
建筑科学   4729篇
矿业工程   1861篇
能源动力   1735篇
轻工业   3908篇
水利工程   1097篇
石油天然气   4076篇
武器工业   531篇
无线电   6400篇
一般工业技术   7096篇
冶金工业   2657篇
原子能技术   601篇
自动化技术   7343篇
  2024年   266篇
  2023年   1065篇
  2022年   1824篇
  2021年   2480篇
  2020年   2001篇
  2019年   1610篇
  2018年   1788篇
  2017年   1978篇
  2016年   1706篇
  2015年   2367篇
  2014年   3007篇
  2013年   3365篇
  2012年   3664篇
  2011年   4143篇
  2010年   3559篇
  2009年   3347篇
  2008年   3289篇
  2007年   3036篇
  2006年   3141篇
  2005年   2623篇
  2004年   1873篇
  2003年   1668篇
  2002年   1652篇
  2001年   1439篇
  2000年   1346篇
  1999年   1581篇
  1998年   1328篇
  1997年   1147篇
  1996年   1039篇
  1995年   871篇
  1994年   688篇
  1993年   503篇
  1992年   440篇
  1991年   270篇
  1990年   226篇
  1989年   181篇
  1988年   130篇
  1987年   90篇
  1986年   70篇
  1985年   46篇
  1984年   35篇
  1983年   32篇
  1982年   31篇
  1981年   19篇
  1980年   18篇
  1979年   6篇
  1951年   2篇
  1940年   3篇
  1929年   1篇
  1928年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
To investigate the effect of cooking temperature (55, 65, 75, 85 and 95 °C) on texture and flavour binding of braised sauce porcine skin (BSPS), sensory acceptance, microstructure and flavour-binding capacity were investigated during the processing of BSPS. Samples cooked at 85 and 95 °C showed better texture and aroma scores. Hardness and chewiness of BSPS were obviously improved at 85 and 95 °C than control group. Collagen structure was significantly destroyed over 85 °C. The porcine skin collagen heated at 85 and 95 °C showed relatively higher flavour-binding capacity than other samples. The improvement of texture of BSPS was mainly attributed to the degradation of collagen. Higher aroma scores of BSPS were related to intense binding abilities with aroma compounds at 85 and 95 °C. Cooking at 85 or 95 °C could be an optimal cooking temperature for BSPS.  相似文献   
2.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
3.
Zhao  Kui  He  Fangmin  Meng  Jin  Wu  Hao  Zhang  Lei 《Wireless Networks》2021,27(3):1671-1681
Wireless Networks - In such mobile platforms as ships and aircraft, the detection and reconnaissance devices are near to the communication facilities. When working at the same time, they will...  相似文献   
4.
5.
6.
The design of highly stable and efficient porous materials is essential for developing breakthrough hydrocarbon separation methods based on physisorption to replace currently used energy-intensive distillation/absorption technologies. Efforts to develop advanced porous materials such as zeolites, coordination frameworks, and organic polymers have met with limited success. Here, a new class of ionic ultramicroporous polymers (IUPs) with high-density inorganic anions and narrowly distributed ultramicroporosity is reported, which are synthesized by a facile free-radical polymerization using branched and amphiphilic ionic compounds as reactive monomers. A covalent and ionic dual-crosslinking strategy is proposed to manipulate the pore structure of amorphous polymers at the ultramicroporous scale. The IUPs exhibit exceptional selectivity (286.1–474.4) for separating acetylene from ethylene along with high thermal and water stability, collaboratively demonstrated by gas adsorption isotherms and experimental breakthrough curves. Modeling studies unveil the specific binding sites for acetylene capture as well as the interconnected ultramicroporosity for size sieving. The porosity-engineering protocol used in this work can also be extended to the design of other ultramicroporous materials for the challenging separation of other key gas constituents.  相似文献   
7.
8.
9.
10.
As a giant leap in DNA self-assembly, DNA origami has exhibited an unprecedented ability to construct nanostructures with arbitrary shapes and sizes. In typical DNA origami, hundreds of short DNA staple strands fold a long, single-stranded (ss) DNA scaffold cooperatively into designed nanostructures. However, large numbers of DNA strands are expensive and would hinder applications such as pharmaceutical investigations because of the complicated components. Therefore, one challenge is how to reduce the number of staple strands needed to construct DNA origami. For a DNA origami structure, the scale-free folding pattern of the scaffold strand is determined by staple strands at the branching vertexes. Simple duplex regions help to define the size-related features of the origami geometry. In this study, we hypothesized that a scaffold strand can be correctly folded into a designed topology by using only staple strands involved in branching vertexes. After assembly, any remaining, flexible, single-stranded regions of the scaffold could be converted into rigid duplexes by DNA polymerase to achieve the designed geometric structures. To demonstrate the concept, we used only 18 staple strands (covering 15 % of the scaffold strand) to assemble a porous DNA nanostructure, which was visualized by atomic force microscopy (AFM). This study helps understanding of the role of cooperativity in origami folding, and provides a cost-effective approach for small-scale prototyping DNA origami.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号