首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   19篇
化学工业   58篇
金属工艺   5篇
能源动力   2篇
轻工业   4篇
无线电   8篇
一般工业技术   31篇
冶金工业   2篇
自动化技术   12篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   9篇
  2017年   5篇
  2016年   3篇
  2015年   6篇
  2014年   11篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   9篇
  2009年   3篇
  2008年   8篇
  2007年   11篇
  2006年   10篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
排序方式: 共有122条查询结果,搜索用时 578 毫秒
1.
Plasma spraying and pack-aluminising processes were combined and applied to the nickel-base superalloy Mar-M247 to improve its cyclic oxidation resistance. The performance tests of duplex ZrO2-8 wt.%Y2O3/MCrAlY thermal barrier coatings (TBCs) were conducted at 1050 °C, 1075 °C, 1100 °C, 1150 °C and 1200 °C. The results of the experiments in this study showed that TBC specimens with the aluminised MCrAlY bond coat exhibited higher cyclic lives (except for the Ni-22Cr-10Al-1Y bond coat), at all the temperatures tested, than specimens on which the bond coat was not aluminised. The microstructures of the Co-29Cr-6Al-1Y, Co-32Ni-21Cr-8Al-0.5Y and Ni-22Cr-10Al-1Y bond coats with or without aluminising treatment were examined in detail using a scanning electron microscope equipped with an electron probe microanalyzer.  相似文献   
2.
The effects of submicron core‐shell rubber (CSR) particles, nanoclay fillers, and molding parameters on the mechanical properties and cell structure of injection‐molded microcellular polyamide‐6 (PA6) composites were studied. The experimental results of PA6 nanocomposites with 5.0 and 7.5 wt% nanoclay loadings and of CSR‐modified PA6 composites with 0.5 and 3.1 wt% CSR loadings were compared to their neat resin counterparts. This study found that nanoclay was more efficient in promoting a smaller cell size, larger cell density, and higher tensile strength for microcellular injection molding parts. A higher nanoclay loading led to more brittle behavior for microcellular parts. It was found that a proper amount of CSR particles could be added to the microcellular injection‐molded PA6 to reduce the cell size, increase the cell density, and enhance the toughness of the molded part. However, CSR particles were less effective cell nucleation agents as compared to nanoclay for producing desirable cell structures, and a higher CSR loading was found to have diminishing effects on the process and on the properties of the parts. POLYM. ENG. SCI., 45:773–788, 2005. © 2005 Society of Plastics Engineers  相似文献   
3.
Abstract— The characteristics of OLED backplanes including the intrinsic properties of a‐Si TFTs and LTPS TFTs will be reviewed. While LTPS TFTs reveal satisfactory stability in AMOLED‐display applications, a‐Si AMOLEDs show better uniformity and are capable of driving OLEDs. However, the stability of a‐Si TFTs under long‐term operation is still unacceptable and remains to be the key issue constraining the commercialization of a‐Si TFT AMOLEDs.  相似文献   
4.
A one‐step process to fabricate crystalline Li4Ti5O12(LTO) particles directly from solution using an atmospheric pressure plasma jet (APPJ) is reported. This process uses Ti and Li ions‐containing salt solutions as the precursor, which is ultrasonically nebulized and then transported to the downstream of the APPJ using a carrier gas. With an extremely short contact time (<0.1 s) between the precursor droplets and the plasma jet, crystalline LTO can be fabricated in one step without additional rinse and postannealing steps. The LTO particle size can be effectively controlled using a preheater, the precursor solution composition and concentration, and the carrier gas flow rate. By properly adjusting the operating condition, particles of diameters from 100 nm to few μm with various morphologies can be obtained. When used as an electrode material, the resulting LTO powders fabricated under selected conditions show specific capacities over 100 mAh/g even at 50 C rate.  相似文献   
5.
Abstract

One of the key design issues for the next generation of IP routers is the IP lookup mechanism. IP lookup is an important action in a router, that is, to find the next hop for each incoming packet with a longest‐prefix‐match address in the routing table. In this paper, we propose an IP lookup mechanism with the number of memory accesses for an IP lookup being one in the best case and being four in the worst case. The forwarding table needed by our mechanism is small enough to fit in the SRAM. For example, a large routing table with 40000 routing entries can be compacted to a forwarding table of 260KBytes in our scheme.  相似文献   
6.
The mechanical blending of polypropylene (PP) and low density polyethylene (LDPE) is an economical and simple method for producing new polymeric materials for specific applications. However, the reduction in strain‐at‐break of the blend is one of its main shortcomings. In this study, PP/LDPE foamed parts were fabricated by conventional injection molding (CIM) with azodicarbonamide as a chemical blowing agent (CBA) and tested for tensile properties at two test speeds. Also, the fracture surfaces of the parts were investigated by scanning electron microscopy (SEM). In addition, to investigate the underlying mechanism of the super‐ductility, the tested samples were carefully analyzed and compared, and further characterized by differential scanning calorimetry and SEM. The results suggest that fabricating PP/LDPE super‐ductile parts using CIM with a CBA is feasible. The results also indicate that there is a close relationship between the mechanical properties and morphological structures, which are deeply influenced by the dosage of CBA, the PP/LDPE ratio, and the packing parameters. Furthermore, compared to conventional injection molded solid parts, the ductility of the foamed parts can be dramatically improved by the formation of microfibrils in the PP phase, which come into being under certain processing conditions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44101.  相似文献   
7.
The residual wall thicknesses (RWT) of the skin and the inner layers are important quality indicators of water‐assisted co‐injection molding (WACIM) parts. The influences of the shape of the cavity cross section and the processing parameters, including the water pressure, water delay time, inner melt temperature, and inner melt flow rate, on the penetration of the inner melt and water were explored via experiments. The results showed that the shape of the penetration section of the inner melt was closer to the cavity section with round corners, while that of the water ended up being round. Both the penetration ratios of the inner melt and the water increased proportionally with increasing circle ratio. Both the minimum values of the total RWT and the inner melt RWT increased with increasing circle ratio. Both the maximum values of the total RWT and the inner melt RWT increased with increasing Max_D, which is the maximum distance between the inscribed circle center and the wall. Both the penetration ratios of the inner melt and the water increased with increasing water pressure, decreased with increasing water delay time, and increased with increasing inner melt flow rate and increasing inner melt temperature. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42866.  相似文献   
8.
Injection foaming is an method for mass producing lightweight, foamed plastic components with excellent dimensional stability while using less material and energy. In this study, a novel injection foaming method employing supercritical CO2 (scCO2) and water as coblowing agents was developed to produce thermoplastic polyurethane (TPU) components with a uniform porous structure and no solid skin. Various characterization techniques were employed to investigate the cell morphology, crystallization behavior, and static and dynamic mechanical properties of solid injection molded samples, foamed samples using CO2 or water as a single blowing agent, and foamed samples using both CO2 and water as coblowing agents. When compared with CO2 foamed samples, samples produced by the coblowing method exhibited much more uniform cell morphologies without a noticeable reduction in mechanical properties. Moreover, these TPU samples had almost no skin layer, which permitted the free transport of nutrients and waste throughout the samples. Such a mass‐produced, skin‐free structure is desirable in tissue engineering. In this study, the biocompatibility of the scaffolds was confirmed and the effect of these blowing agents on the TPU foaming behavior was studied. POLYM. ENG. SCI., 54:2947–2957, 2014. © 2014 Society of Plastics Engineers  相似文献   
9.
Abstract— The bottlenecks in achieving high resolution for active‐matrix OLED (AMOLED) displays based on currently available manufacturing processes were evaluated and compared. The use of a shadow mask has proven to be viable for mass production, but the fabrication of high‐precision shadow masks becomes very difficult when the resolution exceeds 180 ppi. The latest breakthrough in increasing display resolution is presented. Without an increase in cost, the limitations of the conventional shadow‐mask process using novel subpixel designs have been successfully overcome. A high resolution reaching of 270 ppi has been successfully demonstrated on a 3‐in. VGA‐format AMOLED display, fabricated by using a shadow mask with a much lower resolution of 135 ppi. This innovative pixel design opens up the possibilities of manufacturing high‐resolution displays using a relatively low‐resolution shadow mask.  相似文献   
10.
This article presents the development and characterization of transparent poly(styrene‐r‐maleic anhydride) (SMA)/alumina nanocomposites for potential use in optical applications. Chemically treated spherical alumina nanoparticles were dispersed in an SMA matrix polymer via the solution and melt‐compounding methods to produce 2 wt % nanocomposites. Field emission scanning electron microscopy was used to examine the nanoparticle dispersion. When the solution method was used, nanoparticle reagglomeration occurred, despite the fairly good polymer wetting. However, through the coating of the alumina nanoparticles with a thin layer (ca. 20 nm) of low‐molecular‐weight SMA, reagglomeration was absent in the melt‐compounded samples, and this resulted in excellent nanoparticle dispersion. The resultant nanocomposites were semitransparent to visible light at a 2‐mm thickness with improved UV‐barrier properties. Their impact strengths, tensile strengths, and strains at break were slightly reduced compared with those of their neat resin counterpart, whereas a small enhancement in their moduli was achieved. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号