首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
化学工业   7篇
无线电   8篇
一般工业技术   18篇
冶金工业   3篇
自动化技术   2篇
  2022年   2篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
1.
Biopolymer sequencing with mass spectrometry has become increasingly important and accessible with the development of matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). Here we examine the use of sequential digestion for the rapid identification of proteolytic fragments, in turn highlighting the general utility of enzymatic MALDI ladder sequencing and ESI tandem mass spectrometry. Analyses were performed on oligonucleotides ranging in size from 2 to 50 residues, on peptides ranging in size from 7 to 44 residues and on viral coat proteins. MALDI ladder sequencing using exonuclease digestion generated a uniform distribution of ions and provided complete sequence information on the oligonucleotides 2-30 nucleic acid residues long. Only partial sequence information was obtained on the longer oligonucleotides. C-terminal peptide ladder sequencing typically provided information from 4 to 7 amino acids into the peptide. Sequential digestion, or endoprotease followed by exoprotease exposure, was also successfully applied to a trypsin digest of viral proteins. Analysis of ladder sequenced peptides by LCMS generated less information than in the MALDI-MS analysis and ESI-MS2 normally provided partial sequence information on both the small oligonucleotides and peptides. In general, MALDI ladder sequencing offered information on a broader mass range of biopolymers than ESI-MS2 and was relatively straightforward to interpret, especially for oligonucleotides.  相似文献   
2.
The determination of enantiomeric excess by kinetic resolution mass spectrometry has been implemented with the Desorption/Ionization On Silicon (DIOS) MS technique. Measurements can thereby be made much more rapidly than was previously possible, bringing this general methodology for screening asymmetric catalysts closer to true high-throughput status.  相似文献   
3.
In this paper, incoherent multiple-input multiple-output (MIMO) systems operating over multimode fiber are analyzed theoretically. In particular, investigated is the influence of selection of the RF carrier frequency and other system parameters on the value of SNR at the MIMO receiver. It is shown that the RF carrier frequency should be greater than the baseband (3 dB) frequency. Furthermore, it is proved that the MIMO channel SNR reduction is smaller if the mode groups used for communication between transmitter/receiver pairs are different.  相似文献   
4.
Mass spectrometry is a valuable tool in structural and functional viral proteomics, where it has been used to identify viral capsid proteins, viral mutants, and posttranslational modifications. Further, mass-based approaches combined with time-resolved proteolysis (mass mapping) have revealed the dynamic nature of viral particles in solution; this method is contributing to an understanding of the dynamic domains of the viral capsid which may have significant value in developing new approaches for viral inactivation. As a result of these experiments, and by comparison with complementary data from X-ray crystallography, a new dimension to viral protein structure and function is emerging.  相似文献   
5.
Silylation chemistry on porous silicon provides for ultrahigh sensitivity and analyte specificity with desorption/ionization on silicon mass spectrometry (DIOS-MS) analysis. Here, we report that the silylation of oxidized porous silicon offers a DIOS platform that is resistant to air oxidation and acid/base hydrolysis. Furthermore, surface modification with appropriate hydrophobic silanes allows analytes to absorb to the surface via hydrophobic interactions for direct analyte extraction from complex matrixes containing salts and other nonvolatile interferences present in the sample matrix. This enables rapid cleanup by simply spotting the sample onto the modified DIOS target and removing the liquid phase containing the interferences. This approach is demonstrated in the analysis of protein digests and metabolites in biofluids, as well as for the characterizing of inhibitors from their enzyme complex. An unprecedented detection limit of 480 molecules (800 ymol) for des-Arg(9)-bradykinin is reported on a pentafluorophenyl-functionalized DIOS chip.  相似文献   
6.
A theoretical model for heterodyne amplitude-shift-keying (ASK) multiport optical receivers is presented. It applies when the transmitter and local oscillator have significant linewidths. The modeled receiver uses square law detection and postdetection filtering. The model allows for the essentially non-Gaussian character of the probability density function of the noise process at the input of the threshold comparator. Numerical computations are made for the {2×2} multiport receiver. They show that such a receiver can handle laser linewidths on the order of the bit rate with 1.5-dB loss as compared to the ideal heterodyne receiver with zero linewidth  相似文献   
7.
Mass spectrometry-based untargeted metabolomics often results in the observation of hundreds to thousands of features that are differentially regulated between sample classes. A major challenge in interpreting the data is distinguishing metabolites that are causally associated with the phenotype of interest from those that are unrelated but altered in downstream pathways as an effect. To facilitate this distinction, here we describe new software called metaXCMS for performing second-order ("meta") analysis of untargeted metabolomics data from multiple sample groups representing different models of the same phenotype. While the original version of XCMS was designed for the direct comparison of two sample groups, metaXCMS enables meta-analysis of an unlimited number of sample classes to facilitate prioritization of the data and increase the probability of identifying metabolites causally related to the phenotype of interest. metaXCMS is used to import XCMS results that are subsequently filtered, realigned, and ultimately compared to identify shared metabolites that are up- or down-regulated across all sample groups. We demonstrate the software's utility by identifying histamine as a metabolite that is commonly altered in three different models of pain. metaXCMS is freely available at http://metlin.scripps.edu/metaxcms/.  相似文献   
8.
Mass spectrometry has a strong history in drug-metabolite analysis and has recently emerged as the foremost technology in endogenous metabolite research. The advantages of mass spectrometry include a wide dynamic range, the ability to observe a diverse number of molecular species, and reproducible quantitative analysis. These attributes are important in addressing the issue of metabolite profiling, as the dynamic range easily exceeds nine orders of magnitude in biofluids, and the diversity of species ranges from simple amino acids to lipids to complex carbohydrates. The goals of the application of mass spectrometry range from basic biochemistry to clinical biomarker discovery with challenges in generating a comprehensive profile, data analysis, and structurally characterizing physiologically important metabolites. The precedent for this work has already been set in neonatal screening, as blood samples from millions of neonates are tested routinely by mass spectrometry as a diagnostic tool for inborn errors of metabolism. In this review, we will discuss the background from which contemporary metabolite research emerged, the techniques involved in this exciting area, and the current and future applications of this field.  相似文献   
9.
A multiple ionization mass spectrometry strategy is presented based on the analysis of human serum extracts. Chromatographic separation was interfaced inline with the atmospheric pressure ionization techniques electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (+) and negative (-) ionization modes. Furthermore, surface-based matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on silicon (DIOS) mass spectrometry were also integrated with the separation through fraction collection and offline mass spectrometry. Processing of raw data using the XCMS software resulted in time-aligned ion features, which are defined as a unique m/z at a unique retention time. The ion feature lists obtained through LC-MS with ESI and APCI interfaces in both +/- ionization modes were compared, and unique ion tables were generated. Nonredundant, unique ion features, were defined as mass numbers for which no mass numbers corresponding to [M + H](+), [M - H](-), or [M + Na](+) were observed in the other ionization methods at the same retention time. Analysis of the extracted serum using ESI for both (+) and (-) ions resulted in >90% additional unique ions being detected in the (-) ESI mode. Complementing the ESI analysis with APCI resulted in an additional approximately 20% increase in unique ions. Finally, ESI/APCI ionization was combined with fraction collection and offline-MALDI and DIOS mass spectrometry. The parts of the total ion current chromatograms in the LC-MS acquired data corresponding to collected fractions were summed, and m/z lists were compiled and compared to the m/z lists obtained from the DIOS/MALDI spectra. It was observed that, for each fraction, DIOS accounted for approximately 50% of the unique ions detected. These results suggest that true global metabolomics will require multiple ionization technologies to address the inherent metabolite diversity and therefore the complexity in and of metabolomics studies.  相似文献   
10.
Journal of Materials Science: Materials in Electronics - Gold–copper nanostructures are promising in solar-driven processes because of their optical, photocatalytic and photoelectrochemical...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号